The two-body relativistic bound state
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We start with the equations of motion of quantum electrodynamics
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where we allow for a possible photon mass. In terms of Fourier transforms defined by
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and similarly for A,,, these equations become
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Here we consider a particle-antiparticle system of two non-identical fundamental fermions ¢ and x with the
same charge. Combining (4), and (5) for the x species, and considering just the y current, we have
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where we are using early Greek letters for Dirac spinor indices. We have approximated x with its free-field
value xo. Now apply Xg (—p1)]) to the right, where |} is the vacuum state. This gives
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Xo can be anticommuted past ¢ and then y, to annihilate the vacuum. We then pick up the positive-energy
part of the anticommutator function
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where M is the y fermion mass. This gives
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Write po = p — p1. Then
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Multiplying through by p— p1 + m, we have
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We then write
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From which we find
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where we have suppressed the Dirac spinor indices. This is similar, if not actually identical to
Greenberglequation 30. One of the differences is conventions: we must replace e? with e2?/(27)3 to compare.
This factor arises because equation 8 here conventionally has an extra (27)3.

Here we attempt to solve the equation in the chiral representation, where we explicitly show the Dirac
spinor as a direct sum of two-component SL(2,C) objects:
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and similarly for xo. In the chiral representation, with Penrose conventions for SL(2,C) we have
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Since xo satisfies the free Dirac equation Yo(—p1)(— #$1 + M) = 0, we can write
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Substituting into (12), we find just one independent equation for the 8 index, which is
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We may now write out v in terms of two components as well. This gives
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Solving for E}ZOD in the bottom equation, and resubstituting into the top equation, we get
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Here we have written
xo8(p1) = 0(p)6(pT — M?)Xop(p1) (21)

which is possible since yo obeys the Klein-Gordon equation. We have used the shorthand dM(q) for the
invariant measure d*qf(qo)d(q?> — M?). The tensors RGE and SGL are defined as follows:
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and
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I(p, q) is defined as:
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This is traceless, linear in p and ¢ and has the property that I(p,p) = 0. Hence I(p,q) = —I(q,p). It can be

written as
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where 7 are the Pauli matrices.

To associate the states with a time, we Fourier transform back just the time component of the fields.
Thus
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For the purpose of calculating the inner product, we approximate v with its free-field value, giving
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Thus the states
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with g2 = m3, is the boost that transforms to a frame where ¢ is at rest. Thus
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where p? = \/p? + M2 and py is now the operator —id/0t.

We now consider the case of non-relativistic motion. Put p = 0 and assume that p; << M. Also,
ignore the e* contribution. The Lorentz transformations here are then approximately the identity and Rgg
approximates to mM§§E
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Now
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where m,, = mM/(m + M) is the reduced mass.
We may use the fact that —ix is the momentum displacement operator on account of the fact that
[ZL‘i,pj] = 16” Thus
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With the conventions here, the fine-structure constant is defined by o = 272e2, giving us
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If we put the photon mass u to zero, this then leads to the usual gross structure of a single-electron atom.



