
RELATIVISTIC QUANTUM MECHANICS

C.G. OAKLEY

1. Introduction

The traditional approach to relativistic quantum field theory is unsatisfactory for a number of reasons.
Most importantly:

1. There is no reason why the formal “quantization” procedure should work. Quantization takes us from a
classical system to a quantum one, and consists in the replacement of Poisson brackets with commutators.
We are therefore implying the behaviour of the more comprehensive quantum world from the far less
general classical world, which clearly is the wrong way round. In any case the procedure, when applied
to quantum fields, only works properly for spin zero.

2. The traditional approach makes extensive use of the interaction picture, which does not exist (Haag’s
theorem).

3. The result of subtracting infinity from infinity is indeterminate. If one ignores this fact one will produce
theories of no scientific value.

There are things, however, that we can justify, namely special relativity and quantum mechanics. Both
are on an extremely sound footing both experimentally and theoretically. The tools for combining them
have been available for a long time in Wigner’s Unitary Irreducible Representations of the Poincaré group.
We can see the concepts of mass and spin arising very naturally, and we are led from here to the notions
of Fock space, creation and annihilation operators and finally free quantum fields. Although it covers issues
normally associated with quantum field theory, this treatise has the title “relativistic quantum mechanics”
on the grounds that the quantum field is not viewed as fundamental here, being derived instead from
annihilation and creation operators, which in turn are defined as operators on Fock space. It will be shown
that the presence of interactions does not invalidate this analysis. Interactions will be seen, in effect, to be
just interference patterns between free field states.

2. Definitions

Relativistic quantum mechanics is the synthesis of quantum mechanics and special relativity. We will
therefore start by examining both of these in a formal way.

Quantum mechanics: definitions

I. The states of a physical system are a vector space V over the complex numbers C.

II. There exists a map V ⊗ V → C called the “inner product” as follows:

(i) It is sesquilinear, i.e. for any X,Y, Z ∈ V, a ∈ C
(X,Y ) = (Y,X)∗

(X,Y + a.Z) = (X,Y ) + a.(X,Z)

(ii) It is positive definite, i.e.

(a) (X,X) ≥ 0 for any X ∈ V
(b) (X,X) = 0⇐⇒ X = 0

We will use Dirac notation where a vector X is shown thus: |X〉. Dual vectors, which map such vectors
to C are denoted thus: 〈Y |. These are defined from vectors through the inner product, i.e.

〈Y |X〉 = (|Y 〉, |X〉)

for any vector |X〉, defines the dual vector 〈Y | associated with the vector |Y 〉.

1



III. A unitary representation of the group of space-time displacements and three-dimensional rotations acts
non-trivially on V. By unitary, we mean that the group action preserves the inner product.
The most general group element is

U(d,t, θ) = exp(−itH − id ·P− iθ · J)

where t is the time displacement, d is the space displacement, θ is the axis of rotation and |θ| is the
angle. Unitarity implies that the generators are Hermitian operators. The algebra is

[H,Pi] = [H,Ji] = 0; [Pi, Pj ] = 0

[Ji, Jj ] = iεijkJk; [Ji, Pj ] = iεijkPk

Quantum mechanics associates the time displacement operator with classical energy, the space dis-
placement operator with classical momentum and the rotation operator with classical angular momentum.
Conservation of these quantities is then very simply explained as the consequence of the group algebra.

Special Relativity: definitions

The spacetime of special relativity, known as Minkowski space, is an R4 manifold with a metric of
signature -2, whose metric connection has vanishing torsion and curvature. This makes it possible to choose
co-ordinate systems in which the metric always takes the form

ηab = diag.(1,−1,−1,−1) (2.1)

Spacetime is then parameterised by a set of co-ordinates

xa = (x0, x1, x2, x3) = (ct, x, y, z) (2.2)

The values x, y and z are Cartesian spatial co-ordinates measured by some observer and t is the time.
The constant c gives the fundamental relation between measurements of time and distance. It is also the
speed of light in a vacuum.

The group of metric-preserving automorphisms of Minkowski space is known as the Poincaré group. As
we will see, this group is ten-dimensional, consisting of space-time displacements, rotations and transforma-
tions that set the reference frame in motion.

To satisfy the requirements of special relativity, a representation of the Poincaré group must act non-
trivially on the vector space of quantum mechanics. This is how we can embody the principle that the
viewpoints of observers related by Poincaré group operations are equivalent. Our study therefore begins
with the Poincaré group itself.

3. The Poincaré group

The most general automorphism of Minkowski space that preserves the metric is

xa → Λabx
b + da (3.1)

for some constants Λab and da, where

ΛabΛ
c
dηac = ηbd (3.2)

We can think of Λ and η as matrices, in which case this constraint can be written as

ΛT ηΛ = η (3.3)

If we take determinants we find that
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det(Λ) = ±1 (3.4)

so transformations Λ for which det(Λ) = −1 are not connected to the identity. Considering the 00

component of the equation, we see also that

(Λ0
0)2 −

∑
k

(Λk0)2 = 1 (3.5)

which implies that either Λ0
0 ≥ 1 or Λ0

0 ≤ −1. Operations for which the latter is true are not connected
to the identity. So we can divide the Lorentz group (by which I mean the subgroup of the Poincaré group
obtained by putting da = 0) into four disconnected parts:

(i) Λ0
0 ≥ 1 det(Λ) = 1

(ii) Λ0
0 ≥ 1 det(Λ) = −1

(iii) Λ0
0 ≤ −1 det(Λ) = −1

(iv) Λ0
0 ≤ −1 det(Λ) = 1 (3.6)

(i) alone is called the restricted or identity-connected Lorentz group. (i)⊕(iv) is called the proper Lorentz
group and (i)⊕(ii) is called the orthochronous Lorentz group.

Two group operations, not connected to the identity, are parity or space inversion, represented by
Λ = Ip =diag.(1,−1,−1,−1), and time reversal, represented by Λ = It =diag.(−1, 1, 1, 1). Elements of (ii),
(iii) and (iv) can be written as IpΛr, ItΛr and IpItΛr respectively, where Λr is an element of the restricted
Lorentz group. So we reduce the study of the Lorentz group to the study of the identity-connected part,
combined with the discrete operations of time reversal, parity and spacetime reversal.

The Killing vectors of Minkowski space are given by LK η = 0, where L means the Lie derivative. It is
easy to show that the solution to this equation is that K is a linear combination of

Pa = i∂a (3.7)

and
Mab = i(xa∂b − xb∂a) (3.8)

using a co-ordinate system of the kind defined previously (2.1). The apparently perverse introduction of
factors of i is so that generators of a unitary representation will be Hermitian operators. The commutators
of the Killing vector fields are

[Pa, Pb] = 0 (3.9)

[Mab, Pc] = −i (ηcaPb − ηcbPa) (3.10)

[Mab,Mcd] = −i (ηacMbd − ηbcMad + ηbdMac − ηadMbc) (3.11)

which is evidently a Lie algebra —the algebra of the Poincaré group.
The tensor Mab is most readily understood in terms of its component three-vectors. Define

Ji =
1

2
εijkM

jk and Ni = M0i, where i, j, k = 1, 2, 3 (3.12)

Ji then generate rotations and Ni generate boosts, which are the transformations that set one frame into
motion with respect to the other. It is easy to check that

[Ji, Jj ] = iεijkJk (3.13)

[Ji, Nj ] = iεijkNk (3.14)

and [Ni, Nj ] = −iεijkJk (3.15)

The group element is exp(− i
2ωabM

ab) = exp (−iθ · J− iβ ·N) where βi = ω0i and θi = 1
2εijkωjk. If

θ = 0 then β is the direction of the boost and c tanh |β| is its velocity. If β = 0 then θ is a vector parallel to
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the axis of rotation, whose magnitude is the angle of rotation. Note that since there is no non-zero value of
β that gives the identity, the Lorentz group is non-compact.

3.1 Finite-dimensional representations of the Lorentz group. The group SL(2,C).

The vector space of quantum mechanics carries an infinite-dimensional unitary representation of the
Poincaré group. In analysing this, we will come across the notion of spin, which uses finite-dimensional
representations of the Lorentz sub-group. Let us examine the latter now. Our first observation is that the
representation cannot be unitary, since the group is non-compact. Define

K
(±)
i =

1

2
(Ji ± iNi) (3.16)

from which it follows that [
K

(±)
i ,K

(±)
j

]
= iεijkK

(±)
k (3.17)

and
[
K

(+)
i ,K

(−)
j

]
= 0 (3.18)

The Casimir operators are

K(±)2 =
1

4
(J± iN) · (J± iN) (3.19)

=
1

4

(
J2 −N2 ± 2iJ ·N

)
(3.20)

=
1

8
MabM

ab ± i

16
εabcdM

abM cd (3.21)

So in representations where K
(±)
i are Hermitian, we have two commuting SU(2) algebras. We know how

to construct finite-dimensional representations of this group. Labelling the representation with the ordered
pair

(
j(+), j(−)

)
the representation will be

(
2j(+) + 1

) (
2j(−) + 1

)
-dimensional and the Casimir operators

will have eigenvalues j(±)
(
j(±) + 1

)
.

The displacements generated by the Lorentz transformation Killing vectors are given by

exp

(
− i

2
ωcdM

cd

)
: xa → Λab x

b (3.22)

We can write

Λab = exp

(
− i

2
ωcdS

cd

)a
b (3.23)

with
(
Scd
)a

b = i
(
ηcaδdb − ηdaδcb

)
(3.24)

being matrices which have the same algebra as the M ’s.
We can think of these matrices as generating a representation of the Lorentz group in an abstract kind

of way —the four vector representation. This can then be classified in terms of its K(±)2 eigenvalues. A
quick calculation gives

(
K(±)2

)a
b =

(
1

8
ScdScd ±

i

16
εcdefS

cdSef
)a

b

=
3

4
δab (3.25)
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So the four vector belongs to the
(
1
2 ,

1
2

)
representation of the Lorentz group.

Let us now construct the
(
1
2 , 0
)

representation.
The vector space is two-dimensional and complex, and an appropriate choice of generators of the Lorentz

group is given by

K(+) =
1

2
τ ; K(−) = 0 (3.26)

where τi are the Pauli matrices. We write the vectors —usually called spinors —as ψA where A = 1, 2.
The group action is a linear transformation with coefficients

MA
B = exp

(
− i

2
α · τ

)
A

B (3.27)

where α = θ − iβ. Now − i
2α · τ is the most general traceless complex 2× 2 matrix, any matrix of this

kind being formed by making suitable choices for θ and β, so we conclude that M is the most general complex
unimodular matrix (although it should be stated that there are some pathological cases of unimodular 2× 2
matrices that cannot be written as an exponential).

Hence the
(
1
2 , 0
)

representation of the Lorentz group is also the defining representation of the group
SL(2,C).

Although there is clearly a local isomorphism here, globally we find that SL(2,C) covers the identity-
connected part of the Lorentz group 2 to 1. We see this if we form a pure rotation

R = exp(− i
2
θ · τ) = cos(

1

2
θ · τ)− i sin(

1

2
θ · τ) (3.28)

Using (θ · τ)(θ · τ) = θ2 it follows that

R = cos

(
|θ|
2

)
− iθ̂ · τ sin

(
|θ|
2

)
(3.29)

Where θ̂ is the unit vector in the θ direction. Note that if |θ| = 2π, then R = −1. A 2π rotation changes
the sign, but a 4π rotation is required to get back to the identity.

The representation
(
0, 12
)

is obtained by choosing generators such that

K(+) = 0 ; K(−) = −1

2
τ∗ (3.30)

The transformation law is given by

M ′A
B′ = exp

(
i

2
α∗ · τ∗

)
A′

B′ (3.31)

which is the complex conjugate of the matrix M defined previously. Vectors (spinors) are written as
(e.g.) χA′ , the primed index being used to make it clear that the transformation property is different. The
choice of generators in the

(
0, 12
)

case is such that χA′ = (ψA)
∗

is an invariant equation. We can use this

fact to define a vector transforming as the
(
0, 12
)
, ψ̄, from one of

(
1
2 , 0
)
, ψ, i.e.

ψ̄A′ = (ψA)
∗

(3.32)

The antisymmetric tensors εAB , εAB , εA′B′ and εA
′B′ are by definition invariants of SL(2,C) (SL(2,C)

is unimodular, so volumes are preserved, hence ε is preserved). These can be used to raise and lower indices.
If we define index raising by

ψA = εABψB (3.33)

then the lowering operation must be defined by

ψB = ψAεAB (3.34)
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in order that we should get back to the same spinor. This is necessary because εAB = εAB as may be
discovered by using ε to raise and lower its own indices. I shall use the convention ε12 = ε12 = ε1′2′ = ε1

′2′ =
−1. Similarly, we have

ψ̄A
′

= εA
′B′ ψ̄B′ and ψ̄B′ = ψ̄A

′
εA′B′ (3.35)

for raising and lowering primed indices. ε has the properties

εAB ε
AC = εBA ε

CA = δCB (3.36)

and εAB ε
CD = δCA δ

D
B − δDA δCB (3.37)

and similarly for primed indices. I shall refer to unprimed indices as left-handed (LH) and primed
indices as right-handed (RH). This is because massless particle states with these transformation properties
have helicities which are respectively left-handed and right-handed).

Any quantity transforming as the representation
(
m
2 ,

n
2

)
of SL(2,C) can be written as a symmetric

SL(2,C) spinor
ψ(ABC...)(A′B′C′...) (3.38)

which has m LH and n RH indices (we just apply the laws of coupling angular momenta to the pseudo-
angular momenta K(±)).

[Note: we use brackets to indicate symmetrisation or antisymmetrisation of indices:

ψ(α1α2...αn) =
1

n!
(ψα1α2...αn

+ ψα2α1...αn
+ permutations) (3.39)

ψ[α1α2...αn] =
1

n!
(ψα1α2...αn

− ψα2α1...αn
+ even perms.− odd perms.) (3.40)

Vertical bars (“|” ) are used to exempt indices from (anti) symmetrisation. If there are different types
of index in the field then the (anti) symmetrisation is over the type given by the first one in the field.]

Since the four vector is the
(
1
2 ,

1
2

)
of SL(2,C), we can write

VAA′ = σaAA′Va (3.41)

where σaAA′ are a set of numerical coefficients we use for setting up the bispinor in terms of the four
vector. These are often called the Infeld-van der Waarden symbols. The coefficients must obey

σaAA′ = MA
BM∗A′

B′Λabσ
b
BB′ (3.42)

where M and Λ refer to the same Lorentz transformation, i.e.

Λab = exp

(
− i

2
ωcdS

cd

)a
b and MA

B = exp

(
− i

2
ωcdJ

cd

)
A

B (3.43)

where J0i = − i
2τi and J ij = 1

2εijkτk are the generators of the spinor representation. One can solve this
to obtain

σ0
AA′ = k δAA′ ; σiAA′ = k τ iAA′ (3.44)

where k is arbitrary. We will choose it to be real so that a real four vector corresponds to a Hermitian
bispinor, and will further choose k = 1/

√
2, i.e.

σaAA′ =
1√
2

(1, τ)
a
AA′ (3.45)

This is because we will now get the relation

ηab σ
a
AA′ σ

b
BB′ = εAB εA′B′ (3.46)
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which enables us to instantly translate expressions involving Lorentz indices into their spinor equivalents,
without requiring extra numerical factors. E.g.

VAA′W
AA′ = εAB εA′B′V

AA′WBB′ = ηabσ
a
AA′σ

b
BB′V

AA′WBB′ (3.47)

= ηabV
aW b = VaW

a (3.48)

The rule is that each Lorentz index is replaced by a pair of spinor indices. We can introduce an “abstract
index notation” wherein a mismatch of types of indices implies the presence of the σ symbols. E.g.

Vab = WAA′BB′ (3.49)

really means
σaAA′σ

b
BB′Vab = WAA′BB′ (3.50)

With this notation, we can discover that

εab
cd = i

(
δCAδ

D
B δ

D′

A′ δ
C′

B′ − δDA δCBδC
′

A′ δ
D′

B′

)
(3.51)

(our ε convention is that ε0123 = 1. The indices are raised and lowered using η). Evidently every
equation which involves Lorentz indices has its spinor equivalent (although the converse is not true), and
any irreducible representation of the Lorentz group can be classified in terms of SL(2,C). One important one
is (1, 0).

In O(3,1) (Lorentz group) language, this representation is the one that self-dual antisymmetric tensors
belong to, i.e. tensors T[ab] satisfying

Tab =
i

2
εabcdT

cd (3.52)

This tensor has its spinor equivalent φ(AB) given by

Tab = φ(AB)εA′B′ (3.53)

We discover this by considering Tab = TABA′B′

= T(AB)(A′B′) + T[AB][A′B′] + T[AB](A′B′) + T(AB)[A′B′] (3.54)

= T[AB](A′B′) + T(AB)[A′B′] (3.55)

since this is antisymmetric with respect to the exchange of a and b.

= χ̄(A′B′)εAB + φ(AB)εA′B′ (3.56)

for some tensors χ̄ and φ, where we have used the fact that any quantity of the kind ψ[AB] is proportional
to εAB .

Using the formula for εabcd in terms of two-component spinors, we find that

∗Tab =
1

2
εabcdT

cd = iχ̄(A′B′)εAB − iφ(AB)εA′B′ (3.57)

Hence
Tab = i ∗Tab ⇒ Tab = φ(AB)εA′B′ . (3.58)

If we define the symbols σabCD = σ[ab]
CD = σab(CD) by

φCD =
1

2
σabCD Tab (3.59)
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then we find that JabC
D = iσabC

D where JabC
D are the generators of the group SL(2,C). The adjoint

representation of the Lorentz group or SL(2,C) is classifiable as (1, 0) ⊕ (0, 1) although each part of this
direct sum contains all the information since they are related by Hermitian conjugation.

It is easy to establish that

σabC
D =

1

2

(
σaCC′σ

bDC′ − σbCC′σaDC
′
)

(3.60)

Also, using “abstract index notation” :

(σab)C
D =

1

2
εA′B′

(
εAC δ

D
B + εBC δ

D
A

)
(3.61)

This is one of many identities that can be derived from the σ symbols. Another useful one is

ηabδCD = σaDD′σ
bCD′ + σaDD′σ

bCD′ (3.62)

The SL(2,C) ε conventions here follow Penrose. A different set of conventions is, however, in more widespread
use amongst physicists, but these should be avoided for reasons given here.

3.2 Parity, time reversal and spacetime reversal

The group SL(2,C) is connected and so does not contain the discrete operations of parity, time reversal
and spacetime reversal which are part of the full Lorentz group. However, it is possible to have representations
of SL(2,C) where these operations are defined. Consider the parity operation: from the group theory

P K(±)P = K(∓) (3.63)

Therefore the effect of P on a representation of the type
(
j(+), j(−)

)
is to turn it into one of type(

j(−), j(+)
)
. Thus representations of the type (j, j) are the only irreducible representations which may contain

the parity operation. Such a representation is the symmetric, traceless part of 2j four-vector representations
and so it is easy to see that parity (and indeed all the discrete operations) is implemented. Otherwise we
need to abandon irreducibility when we include P , such as in the Dirac spinor representation, which is the
direct sum

(
1
2 , 0
)
⊕
(
0, 12
)
.

3.3 The unitary irreducible representations of the Poincaré group

As discovered earlier (3.9)-(3.11), the algebra of the Poincaré group is[
Mab,Mcd

]
= 4iδ[a[cMd]

b] (3.64)[
Mab, P c

]
= −2iηc[aP b] (3.65)[

P a, P b
]

= 0 (3.66)

In a unitary representation, these will be Hermitian operators. This enables us to diagonalise as many
of these as will commute with each other. Thus we can make all of P a diagonal. The eigenvalues pa then are
continuous and unbounded so the eigenvectors belong to a (non-denumerably) infinite-dimensional vector
space.

Having done this, we notice that under a displacement

Mab → e−id·PMabeid·P = Mab + daP b − dbP a (3.67)

whereas something that commutes with P a must be displacement invariant. So we project out the
displacement-invariant part P [aM bc] which is conveniently embodied in the Pauli-Lubanski vector

Wa =
1

2
εabcdP

bM cd (3.68)
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Thus [
P a, P b

]
=
[
P a,W b

]
= 0. (3.69)

However the components of W a do not commute with each other. We find that

[Wa,Wb] = iεabcdP
cW d (3.70)

which will prevent us from making all the components diagonal. Wa are the generators of the so-called
“little group”, which is the group of Lorentz transformations and rotations that preserve pa. Since PaW

a = 0,
only three are independent.

To form irreducible representations we use the labels given by the eigenvalues of P 2 = PaP
a and

W 2 = WaW
a which are Casimir operators of the Poincaré group. As we will see, the spectrum of eigenvalues

of W 2 depends on the eigenvalue of P 2.

In the following we will only consider the case of finite-dimensional spin, i.e. that where the states of
given pa are not infinitely degenerate.

Case (i): p2 = m2 > 0

Without loss of generality, we can choose a basis where the eigenvalues of P a are

pa = (m, 0, 0, 0) (3.71)

since this will always be accessible from another by a linear transformation, namely a Lorentz transfor-
mation. In this case W0 = 0 but [

W i,W j
]

= im εijkW k (3.72)

so the W ’s generate the group SU(2). Irreducibility requires W 2 = −W iW i to be definite, so it must
have the value −m2s(s+1) in which case the eigenvectors of a given pa form a (2s+ 1)-dimensional subspace
which can be labelled with J3 = −W 3/m which has eigenvalues −s,−s+ 1, · · · , s− 1, s. Evidently 2s is an
integer, and s is called the spin.

The spin vector can also be written as a symmetric 2s-index SU(2) tensor, i.e.

|p; αβγ···〉 = |p; (αβγ···)〉 α, β, γ, · · · = 1, 2 (3.73)

Under a Lorentz transformation

U(Λ)|p; αβγ···〉 = |Λp; δεζ···〉Dδ
α(Λ)Dε

β(Λ)Dζ
γ(Λ) · · · (3.74)

Evidently the matrices Dα
β(Λ) satisfy

D(Λ)D(Λ′) = D(ΛΛ′) (3.75)

In other words, the spinor indices form a representation not merely of the little group, but also of the Lorentz
group as a whole. The rotation generators are given by

J =
1

2
τ (3.76)

The boost generators are then to be obtained by solving (3.14) and (3.15). This gives

N = ± i
2
τ (3.77)

If we choose the top sign, the Lorentz transformation is

exp
(
−1

2
i(θ − iβ) · τ

)
= exp

(
− i

2
α · τ

)
(3.78)
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which means that the SU(2) index is also a covariant LH index of SL(2,C). With the top sign, we have

exp
(
−1

2
i(θ + iβ).τ

)
= exp

(
−1

2
iα∗ · τ

)
=
[
exp(−1

2
iα∗ · τT )

]T
=
[(

exp
( i

2
α∗ · τT

))−1]T
=
((

exp
(
−1

2
iα · τ

)∗)−1)T
(3.79)

which is the transformation of a contravariant RH index.
A state of 3-momentum p can be accessed from the rest frame with the boost

M = exp
(
−i tanh−1

( p
E

)
p̂ ·N

)
(3.80)

where E =
√

p2 +m2 and p̂ is a unit vector in the p direction. Calculating this for the fundamental
representation of SL(2,C) gives

M =
1√

2m(E +m)
(E +m− p · τ) (3.81)

We may choose normalisations in the rest frame that are SU(2) covariant, i.e.:

〈β |α〉 ∝ δβα (3.82)

The vector 〈β | transforms as the complex conjugate, which is also the dual for SU(2), but not for SL(2,C).
Applying the above boost out of the rest frame, we have

〈β |α〉 →M∗βγMα
δ〈γ |δ〉

∝Mα
γM∗βγ = (MM†)α

β (3.83)

Now, MM† =
√
2
m pa(σa)AA′ . In general, therefore, the normalisation must be

〈A′ |A〉 ∝ pAA′ (3.84)

Which for spin s is
〈A′B′C′···|ABC···〉 ∝ p(AA′pBB′pCC′ · · · ) (3.85)

with 2s indices of each type.
The case of the covariant SU(2) index also being a contravariant RH SL(2,C) index is dealt with by

noting that this can be written as

|A
′
〉 =

√
2

m
pAA

′
|A〉 (3.86)

since, in the rest frame,
√
2
m pAA

′
is the Kronecker delta. The tensor pAA

′
can thus be used to exchange LH

and RH indices, and the requirement that the purely LH or purely RH tensor is symmetric translates into
the requirement that

pAA
′
|ABC···A′B′C′···〉 = 0 (3.87)

for a mixed tensor. The most general spin s tensor is thus a 2s-index SL(2,C) tensor, symmetric in LH and
RH indices, and subject to (3.87) when both LH and RH indices appear. These tensors are all equivalent as
one can use the momentum matrix to switch between them.

Case (ii): p2 = 0

We cannot do as in (i) because the basis required would have pa = 0 which cannot be accessed from
pa 6= 0 by a Lorentz transformation, which is necessarily invertible. So let us take

pa = (ρ, 0, 0, ρ) (3.88)
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(ρ 6= 0) which will follow from an appropriate linear transformation. Then W1 and W2 are non-compact
generators (they contain boosts) and W0 = −W3 = ρJ = ρM12 with the algebra

[J,W1] = iW2 ; [J,W2] = −iW1 ; [W1,W2] = 0 (3.89)

The eigenvalues of W1 and W2 are continuous and unbounded, so finite-dimensional spin and unitarity
imply that their action on the vector space is zero. J on the other hand is a rotation operator and so
generates a compact U(1) group. Thus we may have vectors which satisfy

J |p; s〉 = s |p; s〉 (3.90)

where 2s is an integer. s is then called the helicity. Half-integral values are allowed because J , with M23 and
M31, generates the group SU(2). Note that, unlike the massive case, there are no extra degrees of freedom.

Now Wa = (ρJ, 0, 0,−ρJ) when acting on the representation space so a covariant statement of the
helicity constraint is

(W a − sP a) |p; s〉 = 0 (3.91)

Let us try to see this in terms of SL(2,C) indices, assigning the most general irreducible form of a tensor
with NL LH indices and NR RH ones, symmetric in each set. The Pauli-Lubanski vector acting on a single
LH index takes the form

(Wa)X
Y =

1

2
εabcdP

b
(
M cd

)
X
Y =

i

2
εabcdP

b
(
σcd
)
X
Y

= Pb
(
σa
b
)
X
Y

= −pXA′δYA +
1

2
pAA′δ

Y
X (3.92)

where we have used the self-duality of σ, replaced Pa with its eigenvalue and used the identity

(
σa
b
)
X
Y = δB

′

A′

(
−δYAδBX +

1

2
δBAδ

Y
X

)
(3.93)

Using the analogous expression for RH indices, the effect on a symmetric tensor with NL left-handed SL(2,C)
indices and NR right-handed ones is thus:

Wm|ABC···D′E′F ′···〉 = −NLp(AM ′ |BC···)MD′E′F ′···〉+NRpM(D′ |ABC···E′F ′···)M ′〉+
1

2
(NL −NR) pm|ABC···D′E′F ′···〉 (3.94)

Which gives

−NL p(AM ′ |BC···)MD′E′F ′···〉+NR pM(D′ |ABC···E′F ′···)M ′〉+

(
1

2
(NL −NR)− s

)
pm|ABC···D′E′F ′···〉 = 0

(3.95)
We may now use the fact that if pm is a null vector then pm = φ̄M ′φM for some spinor φM . Applying φM

to the above equation, and using the fact that

φ(ATBC···) = 0 (3.96)

for non-zero φA implies that

T(BC···) = 0 (3.97)

We obtain

φA|ABC···D′E′F ′···〉 = 0 (3.98)
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The contraction is equivalent to antisymmetrisation in the two-component world, to which the only
solution is that the LH part of the tensor is proportional to a product of φA spinors. A contraction of (3.95)
with φ̄M

′
leads to a similar conclusion for RH indices. Thus

|ABC···D′E′F ′···〉 = φAφBφC · · · φ̄D′ φ̄E′ φ̄F ′ · · · | 〉 (3.99)

which may be substituted back into (3.95) to give the helicity in terms of number of LH and RH indices:

s =
1

2
(NR −NL) (3.100)

Note that in the massless case, mixed tensors are just momentum matrices multiplied by purely left- or
right-handed tensors. The normalisation of LH tensors therefore must be the same as in the massive case
(3.85).

Case (iii): p2 = −ρ2 < 0.

Transform to a frame where the eigenvalues of Pa are

pa = (0, 0, 0, ρ) (3.101)

Then we find that
W a = (ρJ3, ρN2,−ρN1, 0) (3.102)

The algebra is

[W0,W1] = iρW2 (3.103)

[W0,W2] = −iρW1 (3.104)

[W1,W2] = −iρW0 (3.105)

W1 and W2 are boosts in a finite-dimensional unitary representation of the Poincaré group and so must act
trivially on the vector space. Equation (3.105) then determines that the helicity generator must also act
trivially. Thus, tachyonic states can have no spin.

3.4 Normalisations of irreducible representations

In this representation, the four-momentum operator is Hermitian. Eigenvectors with different eigenval-
ues must be therefore be orthogonal. We see this as follows:

〈q; s′|Pa|p; s〉 = qa〈q; s′|p; s〉 = pa〈q; s′|p; s〉 (3.106)

Applying Pa both to the left and the right. So

(qa − pa) 〈q; s′|p; s〉 = 0 (3.107)

We can now use the Dirac result

x f (x) = 0⇐⇒ f (x) = λ δ (x) (3.108)

(for some constant λ) to obtain

〈q; s′|p; s〉 = δ (q − p) f0 (p, s, s′) (3.109)

For some function f0. We may also note that

〈q; s′|
(
P 2 −m2

)
|p; s〉 =

(
p2 −m2

)
〈q; s′|p; s〉 = 0 (3.110)
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From which we may further specify

〈q; s′|p; s〉 = δ
(
p2 −m2

)
δ (q − p) f (p, s, s′) (3.111)

for some arbitrary function f (p, s, s′).
The spin labels s and s′ are in fact SL(2,C) tensor structures.
Thus the normalisation condition, which applies to all finite-dimensional spin unitary representations

of the Poincaré group is:

〈q;A′B′C′··· |p;ABC··· 〉 = δ (p− q) δ
(
p2 −m2

)
pA(A′pBB′pCC′ · · ·) f (p) (3.112)

In the case of tachyonic states, there can be no SL(2,C) tensor structure, and f(p) must be positive
definite.

In the case of non-tachyonic states (i.e. states with positive or zero m2), if they have negative energy and
half-integral spin then f(p) must be negative definite. Otherwise it is positive definite. Lorentz invariance
requires it to be an invariant function, and although there is no requirement to choose either 1 or -1, it is
convenient to do so. In other words

〈q;A′B′C′··· |p;ABC··· 〉 = (−1)2s·θ(−p0) δ(p− q)δ(p2 −m2)pA(A′pBB′pCC′ · · ·) (3.113)

where s is the spin and the Heaviside step function is defined by

θ(x) =

{
0 x < 0

1 x ≥ 0
(3.114)

defines the normalisation of a standard set of basis of vectors in an irreducible unitary representation of
the Poincaré group. It must be stressed that we have said nothing about these vectors other than their
normalisation and their properties under the action of the Poincaré group. They may be fundamental
particle states, or they may be composites. If the whole universe, for example, was characterised by a
definite mass and spin then it too could be represented as one of these vectors.

One of our requirements was that the states should have positive norm. That this is always the case
when using the Wigner rotation is clear, but seeing it here requires a little more effort. For s > 0 a necessary
and sufficient condition is that the eigenvalues of the momentum matrix pAA′ should have the same sign.
If this is the case, then states of positive norm can always be constructed (both-negative eigenvalues can
of course be made positive by an overall sign). The eigenvalues of the momentum matrix are 1√

2
(p0 ± |p|),

so we see that in the case of p2 < 0 we have |p0| < |p| forcing at least one of the corresponding vectors to
have negative norm. This rules out spin for so-called “tachyonic” states. In the case of p2 = 0 one of the
eigenvalues will be zero. This does not matter as, owing to the additional helicity constraint, there is no
corresponding vector. In the massive case we may transform to the rest frame, where pAA′ = m√

2
δAA′ , which

demonstrates positive norm explicitly.
The mass-shell delta function can be extracted, so for m2 ≥ 0 we can write

|p;ABC··· 〉 = θ(±p0)δ(p2 −m2)|p;ABC··· 〉′ (3.115)

where p is implicitly on shell in the primed states. The normalisation of these states is then

〈q;A′B′C′··· ′|p;ABC··· 〉′ = δm(p, q)pA(A′pBB′pCC′ · · · )|p0 on shell (3.116)

where
δm(p, q) = 2

√
p2 +m2 δ(p− q) (3.117)

From this follows the “completeness” relation:

1 =

(
2

m2

)N ∫
dm(p)|p;ABC··· 〉′pAA

′
pBB

′
pCC

′
· · · 〈p;A′B′C′··· |′ (3.118)
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where

dm(p) =
d3p

2
√

p2 +m2
(3.119)

is an invariant measure. The case of m = 0 is treated by first factoring out φA spinors and then using the
same arguments as for spin zero.

It is often convenient to use a single index to enumerate the N + 1 independent components of the
symmetric SL(2,C) spin tensor. Accordingly, we may define an index α which is such that α = 1, 2, 3, · · ·
corresponds to ABC · · · = 222 · · · , 122 · · · , 112 · · · , · · ·. We then can write

〈q;α′ ′|p;α 〉′ = δm(p, q)Nαα′ (3.120)

and

1 =

∫
dm(p)|p;α 〉′Tαα

′
〈p;α′ |′ (3.121)

where Nαα′ and Tαα
′

are representations of the symmetrised products of momentum tensors. These will
have the property

Nαβ′T
αα′ = δα

′

β′ (3.122)

4. Fock space

The vectors defined as unitary irreducible representations of the Poincaré group are the basis of rel-
ativistic quantum mechanics. Multi-particle states are formed as tensor products of these vectors. Such
composite vector spaces may include different species of particle, multiple particles of the same kind, or
some combination.

In the case of identical particles, we will wish to incorporate the principle of indistinguishability.
If we characterise a vector in the product space of two identical particles as |12〉, where “1” and “2” are

shorthand for the momentum, spin and other labels, then the principle of indistinguishability requires that
the state |21〉 gets treated in the same way as |12〉.

To deal with this, we may define the exchange operator X12 as the operator that switches the identities
of the particles. It is easy to see that the operator can be defined to be both linear and Hermitian. Also,
since X2

12 = 1 it follows that the eigenvalues are +1 and -1. The eigenvectors are then

|S〉 = |12〉+ |21〉
|A〉 = |12〉 − |21〉 (4.1)

The state |S〉, which is invariant under particle exchange, demonstrates Bose-Einstein statistics, whereas
|A〉, which changes sign as a result of particle exchange, demonstrates Fermi-Dirac statistics.

Extension of these arguments to three particles reveals that mixed statistics are impossible. Consider
X12X23. This performs a single cyclic permutation of three particles, so three applications should bring us
back to our starting point. In other words,

X12X23X12X23X12X23 (4.2)

is the identity. A state that is antisymmetric under 1 ↔ 2 exchange, but symmetric under 2 ↔ 3 exchange
however will change sign under the action of the operator (−1 = −1 × 1 × −1 × 1 × −1 × 1). Since this
contradicts the need for the state to remain the same, we are forced to conclude that no such state can exist.

Thus, three-particle eigenstates of the exchange operators are either totally symmetric or totally anti-
symmetric, a result that extends to all particle numbers. Note that when we have more than two particles,
restricting ourselves to exchange-symmetric eigenstates also means ignoring parts of the vector space. For
example, with three particles, we may form only two exchange eigenvectors from the six states generated by
particle exchanges.

The direct sum of single-particle product spaces for identical particles is known as a Fock space.
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To understand Fock space, let us extend (3.116) to an n-particle product space. For the time being, we
will consider only spin zero.

〈q1q2 · · · qn′|p1p2 · · · pn〉′ = δm(p1, q1)δm(p2, q2) · · · δm(pn, qn) (4.3)

A state comprised of identical particles with Fermi-Dirac or Bose-Einstein statistics is formed as the sum of
such vectors over all permutations of the momentum labels, i.e.

|p1p2 · · · pn;±〉 =
1√
n!

∑
perms

i1,···,in∈
1,···,n

(±1)P |pi1pi2 · · · pin〉′ (4.4)

(the normalisation factor here is chosen for later convenience). The top sign is for the case of Bose-Einstein
statistics and the bottom sign for Fermi-Dirac. Here P is the number of exchanges required to get to the
given permutation from the the original one (where the labels are in ascending order).

Now consider
〈q1q2 · · · qn;±|p1p2 · · · pn;±〉

Each of the n! permutations in 〈q1q2 · · · qn;±| will give the same contribution (one just permutes the labels
q1, q2 · · · qn and p1, p2 · · · pn simultaneously), so we get

√
n! 〈q1q2 · · · qn|′

1√
n!

∑
perms

i1···in∈
1···n

(±)P |pi1pi2 · · · pin〉′ =
∑
perms

i1···in∈
1···n

(±1)P δm(q1, pi1)δm(q2, pi2) · · · δm(qn, pin) (4.5)

We are now in a position to define the creation operator:

a†(p) =

∞∑
n=0

1

n!

∫
|pp1 · · · pn;±〉dm(p1) · · · dm(pn)〈p1 · · · pn;±|

= |p〉〈|+
∫
|pp1;±〉dm(p1)〈p1|+

1

2

∫
|pp1p2;±〉dm(p1)dm(p2)〈p1p2;±|+ · · · (4.6)

As the name suggests, this operator has the effect of adding a particle of momentum p to the state. This is
done in such a way as to preserve the symmetry or antisymmetry. From this definition, it follows that

a†(p)|p1 · · · pn;±〉 = |pp1 · · · pn;±〉 (4.7)

Note that

a†(p)a†(q)|p1 · · · pn;±〉 = |p q p1 · · · pn;±〉 = ±|q p p1 · · · pn;±〉 = ±a†(q)a†(p)|p1 · · · pn;±〉 (4.8)

Since this applies to any state |p1 · · · pn;±〉, it follows that

[a†(p), a†(q)]∓ = 0 (4.9)

where we use the notation [A,B]− = [A,B] = AB −BA and [A,B]+ = {A,B} = AB +BA.
The Hermitian adjoint is

a(p) =

∞∑
n=0

1

n!

∫
|p1 · · · pn;±〉dm(p1) · · · dm(pn)〈pp1 · · · pn;±| (4.10)

This is known as the annihilation operator as it will reduce the particle number of the state by one, giving
zero in the case of the zero-particle (vacuum) state.

Consider
a(p)|p1 · · · pn;±〉
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Evidently the only term in the series not orthogonal to the state is that where the dual vector on the right
has n particles. We therefore get

a(p)|p1 · · · pn;±〉 =
1

(n− 1)!

∫
|q1 · · · qn−1;±〉dm(q1) · · · dm(qn−1)〈p q1 · · · qn−1;±|p1 · · · pn;±〉 (4.11)

Substituting (4.5) we then have

=
1

(n− 1)!

∫
|q1 · · · qn−1;±〉dm(q1) · · · dm(qn−1)

∑
perms
i1···in

(±1)P δm(p, pi1)δm(q1, pi2)δm(q2, pi3) · · · δm(qn−1, pin)

=
1

(n− 1)!

∑
perms
i1···in

(±1)P δm(p, pi1)|pi2pi3 · · · pin ;±〉

=

n∑
i=1

(±1)i−1δm(p, pi)|p1p2 · · · pi−1pi+1 · · · pn;±〉 (4.12)

In the final step we are collecting together the (n− 1)! permutations associated with each distinct value of
i1. The factor of (±)i−1 arises because i− 1 exchanges are needed to get to the sequence p1, p2, · · · , pn from
pi, p1, p2, · · · pi−1, pi+1, · · · , pn.

Now consider

a†(q)a(p)|p1 · · · pn;±〉 =

n∑
i=1

(±1)i−1δm(p, pi)|q p1 · · · pi−1pi+1 · · · pn〉 (4.13)

We also have

a(p)a†(q)|p1 · · · pn;±〉 = a(p)|q p1 · · · pn;±〉

= δm(p, q)|p1 · · · pn〉 ±
n∑
i=1

(±)i−1δm(p, pi)|q p1 · · · pi−1pi+1 · · · pn〉 (4.14)

Thus
[a(p), a†(q)]∓|p1 · · · pn;±〉 = δm(p, q)|p1 · · · pn;±〉 (4.15)

This applies to all states, hence
[a(p), a†(q)]∓ = δm(p, q) (4.16)

The same arguments apply when the spin is greater than zero. The arguments are most easily developed
using the single-index spin label ((3.120)-(3.122)), and we find that (4.9) and (4.16) generalise to give

[aA′B′C′···(p), aK′L′M ′···(q)]∓ = 0 (4.17)

and
[aA′B′C′···(p), a

†
ABC···(q)]∓ = δm(p, q)pA(A′pBB′pCC′ · · · ) (4.18)

We may define
ΦABC···(p) = θ(p0)δ(p2 −m2)a†ABC···(p) (4.19)

In terms of these operators, the commutation relations are

[ΦABC···(p),ΦKLM ···(q)]∓ = 0 (4.20)

and
[Φ†A′B′C′···(p),ΦABC···(q)]∓ = δ(p− q)θ(p0)δ(p2 −m2)pA(A′pBB′pCC′ · · · ) (4.21)
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5. The free relativistic particle

A vector with definite four-position x is going to have the transformation property

U(d, 0)|x〉 = e−id.P |x〉 = |x+ d〉 (5.1)

under spacetime displacement. The four-dimensional Fourier transform

|p〉 = (2π)−4
∫
d4x eip·x|x〉 (5.2)

will therefore be an eigenvector of the four-momentum operator with eigenvalue p, something we can identify
with one of the vectors in a unitary irreducible representation of the Poincaré group developed earlier. So,
allowing for a possible scaling function f(p), and inverting the Fourier transform, we have

|x〉 =

∫
d4p f(p) e−ip·x|p〉 (5.3)

Considering only states within the forward light cone, the normalisation is then

〈x′|x〉 =

∫
d4p θ(p0)δ(p2 −m2)e−ip·(x−x

′)|f(p)|2 =

∫
d3p

2p0
e−ip·(x−x

′)|f(p)|2
∣∣∣∣
p0=E(p)

(5.4)

where E(p) =
√

p2 +m2. The other requirement is the Lorentz transformation property

U(0,Λ)|x〉 = e−
i
2ωabM

ab

|x〉 = |Λx〉 (5.5)

Applying this to (5.3), we find that f(p) = f(Λp), in other words, f(p) must be an invariant function. The
the only invariant we have to form this is p2, which is a constant, so we are free to choose f(p) = 1 and the
state of definite four-position is

|x〉 =

∫
d4p e−ip·x |p〉 (5.6)

which is unique up to a scaling factor. The points to note are, firstly, that the matrix element (5.4) is
not necessarily zero when x 6= x′. There cannot therefore be a Hermitian four-position operator, since
this requires eigenvectors with different eigenvalues to be orthogonal. This is as it should be, as having
non-zero matrix elements for states at different times is what gives us a basis for calculating amplitudes for
scattering and other processes in quantum mechanics. Secondly, the four-position states obey the Klein-
Gordon equation. The group velocity of wave packets here is

vg =
∂E(p)

∂p
=

p

E(p)
(5.7)

from which we may derive the expressions for the momentum and energy for the free relativistic particle in
terms of its velocity.

Although there is no Hermitian four-position operator, we can nevertheless construct a Hermitian 3-
position operator for a particular Lorentz frame by choosing f(p) = (2π)−3/2

√
2E(p) in (5.4). This gives

〈x′; t′|x; t〉 =

∫
d3p

(2π)3
e−iE(p)(t−t′)+ip·(x−x′) (5.8)

At equal time, this is
〈x′; t|x; t〉 = δ(x− x′) (5.9)

The 3-position operator is then

x̂ =

∫
d3x|x〉x〈x| (5.10)
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which leads to the physical interpretation that for state |ψ〉

|〈x; t|ψ〉|2d3x (5.11)

is the probability of finding the particle in the region d3x around x at time t.

6. Quantum field theory; the spin-statistics theorem

Quantization is the process whereby a classical theory is converted into a quantum theory by the
replacing of classical Poisson brackets with quantum commutators. Since Poisson brackets are an artefact
of Lagrangian and Hamiltonian dynamics, the first task is to express the dynamical system in this form.
This means identifying dynamical variables and then constructing a Lagrangian in terms of these such that
the variational equations become the equation of motion. For a single particle, the dynamical variables
will normally be the position and velocity at a given time, but for a classical field, there will be an infinite
number, being the field amplitudes (and possibly also the first time derivative) at every point in space at
a given time. The definition requires that the Poisson bracket of a dynamical variable with another at the
same time is zero, a stricture on quantum field theory before we even begin to examine equations of motion,
i.e.

[Φ(t,x),Φ(t,x′)] = 0 when x 6= x′ (6.1)

Since we could choose any relativistic frame of reference to quantize, our requirement is therefore that
field operators must commute for spacelike intervals. The creation operators can be made functions of the
spacetime co-ordinate in the same way as was done for states in equation (5.3), i.e. by Fourier transform.
Using the operators of (4.19), we have

ΦABC···(x) =

∫
d4p e−ip.xΦABC···(p) (6.2)

As with the states, the construction is unique, apart from a scaling factor. The (anti)commutators of this
with itself and its Hermitian adjoint are respectively

[ΦABC···(x),ΦKLM ···(x
′)]± = 0 (6.3)

and

[Φ†A′B′C′···(x),ΦABC···(x
′)]± =

∫
d4p θ(p0)δ(p2 −m2)eip·(x−x

′)pA(A′pBB′pCC′ · · · ) (6.4)

Since the latter does not in general vanish for spacelike intervals, we cannot use Φ as a quantum field.
We may, however, form linear combinations of the fields and their Hermitian adjoints which commute for
spacelike intervals.

Let us consider the massless case first. Write

ΦABC···(p) = φAφBφC · · ·Φ(p) and Φ′A′B′C′···(p) = φ∗A′φ
∗
B′φ
∗
C′ · · ·Φ(p) (6.5)

where pAA′ = φAφ
∗
A′ and Φ(p) is a spinless field. Now form the combination

Φ̃ABC···(x) = ΦABC···(x) + kΦ′†ABC···(x) (6.6)

for some constant k. Evidently

[Φ̃†A′B′C′···(x), Φ̃ABC···(x
′)]± =

∫
d4p e−ip·(x−x

′)δ(p2)pAA′pBB′pCC′ · · · {θ(−p0)(−1)N ± |k|2θ(p0)}

= (i∂AA′)(i∂BB′)(i∂CC′) · · ·
∫

d3p

2|p|
eip·(x−x

′){(−1)Nei|p|(x0−x′0) ± |k|2e−i|p|(x0−x′0)} (6.7)

When x0 = x′0 this will vanish provided that |k| = 1 and (−1)N = ∓1. For the commutator to vanish, we
therefore require N to be even, i.e. the field must have integral spin. This allows us to proceed to the next
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stage in field quantization, with the particles obeying Bose-Einstein statistics. There is, however, another
possibility. If we extend the notion of quantization to permit Poisson brackets to become anti-commutators
as well as commutators, then for odd N , and therefore half-integral spin, we can have particles with Fermi-
Dirac statistics as well. This connection between spin and statistics, the spin-statistics theorem, which is
known to obtain experimentally, is strong encouragement that relativistic quantum theory is on the right
track.

For the massive case we can form the combination

Φ̃ABC···(x) = ΦABC···(x) + k∂A
′

A ∂B
′

B ∂C
′

C · · ·Φ
†
A′B′C′···(x) (6.8)

For some k. It then may be demonstrated that

[Φ̃ABC···(x), Φ̃†A′B′C′···(x
′)]± = ±

∫
d4p δ(p2 −m2)e−ip·(x−x

′)pA(A′pBB′pCC′ · · · )×(
θ(p0)± θ(−p0)(− 1

2m
2)N |k|2

)
=

∫
d3p

2p0
eip·(x−x

′)pA(A′pBB′pCC′ · · · )
(
e−ip0(x0−x′0) ± eip0(x0−x′0)(− 1

2m
2)N |k|2

) ∣∣∣∣
p0=
√

p2+m2

(6.9)

When x0 = x′0 this will vanish provided that |k| = (
√

2/m)N and (−1)N = ∓1. The spin-statistics theorem
connection therefore applies here as well.

We then find that

[Φ̃ABC···(x), Φ̃†A′B′C′···(x
′)]± = ±

∫
d4p δ(p2 −m2)ε(p0)e−ip·(x−x

′)pA(A′pBB′pCC′ · · ·) (6.10)

and

[Φ̃ABC···(x), Φ̃KLM ···(x′)]± = ±k(− i
2m

2)N
∫
d4p δ(p2 −m2)ε(p0)e−ip·(x−x

′)δKLM ···(ABC···) (6.11)

where ε(x) = −1 when x < 0, ε(0) = 0 and ε(x) = 1 when x > 0. We use the notation

δABC···KLM ··· = δAKδ
B
L δ

C
M · · · (6.12)

Equation (6.10) applies to massless fields as well. For the massive case, note that

Φ̃†A′B′C′···(x) = k∗∂AA′∂
B
B′∂

C
C′ · · · Φ̃ABC···(x) (6.13)

If N is even we can form the N/2-index Lorentz tensor field

Aabc···(x) = ∂KA′∂
L
B′∂

M
C′ · · · Φ̃ABC···KLM ···(x) (6.14)

This is symmetric and traceless, and the contraction with ∂a will vanish. It can then be shown that if
we choose k = (

√
2/m)N then condition (6.13) means that Aabc···(x) is also Hermitian. The commutator

function of this field is then

[Aabc···(x), Aklm···(x
′)] = −(m/

√
2)N

∫
d4p δ(p2 −m2)ε(p0)e−ip.(x−x

′) T abc···klm···(p) (6.15)

where
T abc···klm···(p) = pN

′

K pO
′

L pP
′

M · · · pAD′pBE′pCF ′ · · · δA
′B′C′···D′E′F ′···

(K′L′M ′···N ′O′P ′···) (6.16)

If N is odd, we may form a 1
2 (N − 1)-index Lorentz tensor-spinor

Aabc···Q(x) = ∂KA′∂
L
B′∂

M
C′ · · · Φ̃ABC···KLM ···Q(x) (6.17)
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This is symmetric and traceless in any pair of Lorentz indices, and contractions with ∂a will vanish.
Choosing k = −i(

√
2/m)N we find that (6.13) leads to a constraint on A as follows:

A†abc···Q′(x) =

√
2

m
i∂QQ′Aabc···Q(x) (6.18)

For the case of spin 1
2 , this will be recognised as the Dirac equation for a Majorana spinor. The

anticommutator is then

{Aabc···Q(x), Aklm···S(x′)} = −(m/
√

2)N−2
∫
d4p δ(p2 −m2)ε(p0)e−ip.(x−x

′) T abc···Qklm···S(p) (6.19)

where
T abc···Qklm···S(p) = pU

′

K p
V ′

L pW
′

M · · · pS
′

S pAD′p
B
E′p

C
F ′ · · · p

Q
Q′ δ

A′B′C′···D′E′F ′···Q′
(K′L′M ′···U ′V ′W ′···S′) (6.20)

7. Interactions

7.1 Quantization of classical electrodynamics; Haag’s theorem

The fundamental mathematical structure of quantum mechanics (i.e. that the states of a physical system
are an infinite-dimensional complex linear vector space with a sesquilinear inner product that carries a non-
trivial, inner-product-preserving representation of the spacetime and other symmetry groups) was stated in
section 2.

The remainder of what one needs to know in order to turn quantum mechanics into a calculational
tool cannot be stated as elegantly. It is based on applying the formal “quantization” procedure to classical
mechanics and electrodynamics. Since defining the microscopic behaviour of a system from its macroscopic
behaviour cannot be expected to be reliable, we need not be too surprised when we find problems.

The first problem is that if, as would appear to be necessary, we use the four-vector potential Aa as
dynamical variables for the electromagnetic field, we find that the conjugate momentum to A0 vanishes
identically, preventing us from forming Poisson brackets. We rescue this situation non-axiomatically by
choosing a gauge, and then treating A0 as a derived, rather than fundamental variable. Quantization can
then proceed, leaving a mutual interaction between fermions via a static 1/r potential.

The Hamiltonian, which in the quantum world is the time displacement operator, then is the sum of the
free Hamiltonians for fermions and photons, plus a Coulomb interaction between the fermions, and a three-
point fermion-photon interaction. If one adds couplings arising from the half-integral spin of the fermions
(which have no classical analogue) one then has a theory that, inter alia can (a) accurately generate energy
levels of fermion bound states and (b) correctly accounts, at least to first order in perturbation theory, for
the absorption and emission of radiation by free and bound fermions.

One does, however, run into the very serious problem that, to second order in perturbation theory, the
fermion-photon interaction— the so-called fermion self-energy—is infinite.

Less serious, but still worrying, is the lack of explicit covariance. It seems wrong that even with fully
relativistic equations of motion we can end up with a theory that does not look relativistic at all. In
particular, the notion that the Hamiltonian can be written in the form

H = H0 + V (7.1)

where H0 is the “free” Hamiltonian for the particles, and V is the “interaction”, can be demonstrated to be
incompatible with special relativity as follows.

Form a unitary operator U(t) thus:
U(t) = eiH0te−iHt (7.2)

This can be used to transform an interacting particle at position x at time x0 to a free one:

|x〉free = U(n · x)|x〉int (7.3)
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where x = (x0,x) and na = (1, 0, 0, 0). The free and interacting states are the same when x0 = 0. Now, we
are requiring that both free and interacting theories are covariant. Hence, applying a Lorentz transformation

U(0,Λ)|x〉free = |Λx〉free and U(0,Λ)|x〉int = |Λx〉int (7.4)

Applying this Lorentz transformation to (7.3), rearranging, and replacing Λx with x, we then find

|x〉free = U(0,Λ)U(Λn · x)U(0,Λ)†|x〉int (7.5)

This shows that for all x on the spacelike hyperplane n′.x = 0 where n′ = Λn, the free state is the same
as the interacting state. Since Λ can be any Lorentz transformation, we conclude that for any spacelike x
the free and interacting states are the same. Now, for a later time, where x is timelike and future-pointing,
(7.5) shows that the unitary transformation that relates the free and interacting states here, although not
necessarily the identity, must be the same as that connecting the states for points separated from here by a
spacelike interval. Some of these points will also be separated from (0, 0, 0, 0) by a spacelike interval, for
which the unitary transformation is known to be one. Hence the unitary transformation for all points is one.
Thus H0 = H and the interaction V is trivial.

The notion that a relativistic field theory that is related to a free field theory by a unitary transformation
U(t) must itself be a free field theory, is known as Haag’s theorem.

Haag’s theorem is a valid result that can be demonstrated in a number of different ways. It is also an
important result. The fact that it is almost completely ignored by writers of text books on quantum field
theory is therefore a source of puzzlement to the author.

7.2 Local field equations

Local field equations in general are those where a disturbance cannot propagate at infinite speed. In
a relativistic system, one further requires that the disturbance does not propagate faster than the speed of
light. This definition assumes that one may easily disentangle cause and effect: something that is much
harder to do in a quantum system than a classical one, so in practise locality is just taken to mean that the
equations of motion are of the form

K(∂)Φi(x) = P (∂,Φj(x)) (7.6)

where K is some finite-order differential kernel and P is some finite-order polynomial in the fields and
spacetime derivatives, such that covariance is respected. One may see that the operator exp(a.∂), which has
the property exp(a.∂)f(x) = f(x+ a), is an example of one that both is non-local and contains derivatives
up to infinite order. Whether derivatives up to infinite order always imply non-locality in the original sense
is, however, not so clear.

To be continued ...
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