
Stückelberg covariant perturbation theory:
timeline

1934 Stückelberg: 1st quantized electron, 2nd quantized photon; 4D 
Fourier transforms of fields; field expansion in coupling; physical 
interpretation by analysing poles. Compton scattering only.

1950 Källén: 2nd quantized fields; expansion in coupling; all processes, 
but no cross-sections. No reference to Stückelberg.

1955 Haag: expansion of scalar field in coupling. Attempt to solve 
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1955 Haag: expansion of scalar field in coupling. Attempt to solve 
commutators.

1972 Källén: Earlier work appears in his Quantum Electrodynamics text 
book.

1984-7 CGO: Independent reinvention of Stückelberg work, but all 
processes and with solving of commutators.

1999 Lacki, Ruegg, Telegdi: review article on Stückelberg work.



Renormalization: why you should be ashamed 
of yourselves
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E.g. Zee, Quantum Field Theory in a Nutshell, p. 149.
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1k(Elastic scattering in Φ4 theory) Loop diagram is a divergent integral, so the 
theory does not work. End of story!

Zee cuts off the integral with a parameter Λ, leading to the expression
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Yet beside the fact that nothing gave us the right to cut off the integral, 
there is no requirement for Λ to be a constant – by adjusting the 
functional form here, one can get any answer one wants!



All we know for sure is that naïve Feynman-Dyson perturbation theory does not 
work!

“Effective” field theory just consists in fitting physical amplitudes with a set of pre-
determined functions without any axiomatic basis: the success of Quantum 
Electrodynamics is just the success in choice of fitting functions and has no 
basis in quantum field theory!
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Can one do better?

I think so ...



The 4D Fourier transform

Any operator-function of the 
spacetime co-ordinate x = (ct, x) 
will, by definition, have the 
property that

)()](,[ xixP Φ∂−=Φ µµ

The Fourier transform, defined by

is a state of 4-momentum p. Note 
that, thus far, we have said very 
little about Φ: it could be a free 
field, an interacting field. It could 
also be some kind of a composite.

Now: let us consider the specific 
case of Φ3 theory. The equation of 
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will therefore obey

( ) )(2)( 44 xexdp xip Φ=Φ ⋅−−

∫π

)()](,[ pppP Φ=Φ µµ

Φ(p) is thus an operator of 4-
momentum p, and therefore

0)( pp Φ=

case of Φ theory. The equation of 
motion is

)()()( 222 xxm Φ−=Φ+∂ λ

which in momentum space is

)()()()( 422 qpqqdpmp −ΦΦ=Φ− ∫λ

(using the convolution theorem)



The expansion of the field in the coupling

The technique pioneered by Stückelberg, and later, quasi-independently, by 
Källén. We start with a MacLaurin expansion of the field:
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The momentum-space equation of motion then becomes an infinite number 
of equations, one for each power of λ:
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Φo is thus a free field, and the higher-order terms are determined from 
this. The theory is thus entirely determined from free fields.



Calculating matrix elements
Fortunately, we know how to handle free fields. In terms of the more-familiar 
annihilation and creation operators, we can write Φ0 thus:

( ) ( )[ ]p-p apapmpp )()()()( 00
22

0 −+−=Φ + θθδ

The commutator function is then

)()()()2()](),([ 0223
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... and, in principle at least, we can then calculate any matrix element by 
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... and, in principle at least, we can then calculate any matrix element by 
inspection, expanding the higher-order fields in terms of Φ0 and then 
commuting the negative-energy (annihilation) parts past to annihilate the 
vacuum. Källén represents these amplitudes using something akin to 
Feynman graphs; however since there are two kinds of “propagator”, with 
factors respectively
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I personally draw the first with a thin line, and the second with a heavy one.



Scattering amplitudes
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2-on-2 scattering is represented by the matrix element

where we have Fourier-transformed back just the time components. 
Consideration of the <Φ0Φ2Φ0Φ0> and <Φ0Φ0Φ2Φ0> contribution gives 
expressions of the form
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where 22)( mE += pp

This is approximated with an energy-conservation delta function in the 
same way as is done with time-dependent perturbation theory in 
quantum mechanics, and the amplitudes are the same as those 
obtained from Feynman graphs for the process.



Caveats

1. Infinities. Contractions between different expansion trees never 
diverge. Loops will always be just phase space integrals and so 
cannot be infinite. However, contractions within an expansion 
tree are, more often than not, divergent integrals and seem to be 
unavoidable as long as one is using local field equations. The 
answer, probably, is just not to use local field equations, but 
rather “the expansion that would have arisen from a local field 
equation, but put in normal order”. 
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equation, but put in normal order”. 

2. Haag’s theorem is manifest. The matrix element

0)()()(0 ttt ,'x',x'x, ΦΦΦ

is non-zero. This vanishes identically for free fields, so no 
unitary operator U(t) exists which transforms interacting fields 
into free fields. This is Haag’s theorem, and makes it hard to 
make the correspondence with ordinary quantum mechanics.



Spacelike (anti-)commutativity
The requirement that fields commute or anti-commute at spacelike intervals 
leads to the spin-statistics theorem for free fields. In momentum space the 
requirement for a scalar field translates into 
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Where n is a timelike 4-vector, but r and q are arbitrary, apart from the 
condition r.n = 0.
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This can actually be solved for interacting fields as well, order-by-order in 
the coupling constant. Haag (1955) did the calculation up to first order and 
found that a local field equation with a possible derivative coupling solves 
this. The speaker solved up to infinite order, but with the additional 
requirement that the time derivatives of the fields also commute with the 
field and with each other, also finding local field equations as the solution, 
but with derivative couplings not allowed. The indications seemed to be that 
local field equations with the normal-ordering modifications needed to avoid 
infinities, also solved the commutators.



Quantum electrodynamics and beyond
The scalar field theory described here was for illustration only. Almost all 
the work has been in the domain of Quantum Electrodynamics. One 
finds that

1. The photon mass can be arbitrarily small, but cannot be zero
2. Scattering amplitudes for QED up to tree level agree with Feynman 

graph analysis.
3. A chiral version of the theory seems to require self-interactions between 

vector bosons – maybe there is a Higgs-less Standard Model here - ? 
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Replicating the “tests” of quantum electrodynamics requires an 
understanding of bound states for the Lamb Shift and the classical limit 
of the photon field for the anomalous magnetic moment.

Theoretically, SCPT should allow treatment of processes other than 
scattering as the time variable is not eliminated. Theoretically ... but it 
remains elusive!


