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An argument, based on what would normally be regarded as a reasonable set of assumptions, suggests that
in Relativistic Quantum Field Theory, there is no Interaction Picture. The proof requires a reformulation
of field theory which does not assume this, and it is found that this reformulation needs no renormalisation,
suggesting that the false assumption of the existence of the interaction picture is responsible for the usual
divergences.

1. Introduction

In his book Lectures on Quantum Field Theory Dirac suggests, on the basis of certain problems of
formulating field theory, that the Schrödinger Picture does not exist in a Relativistic Quantum Field Theory.
I suppose that it is natural that the notion that the Interaction or Dirac picture would not exist would not
cross his mind, but a set of arguments may be presented which lead inexorably to this conclusion. We begin
with a simpleminded argument, and then proceed to back this up with a more substantial analysis wherein
the case of a self-interacting scalar field theory is analysed. The simpleminded argument runs as follows—

If the interaction picture exists, then there is a unitary transformation U(t) = eiHte−iH0t which relates
states of the free theory to those of the interacting theory, assuming that they were the same at t = 0. Thus

Φ(t,x) = U(t)Φ0(t,x)U(t)
† (1)

gives the interacting field operator in terms of the free field operator. In relativistic notation this is

Φ(x) = U(n · x)Φ0(x)U(n · x)† (2)

where na = (1, 0, 0, 0). However, if the theory is properly relativistic, then the relationship cannot be true
in one frame without being true in every other frame, so we must assume that it is true for all n satisfying
n0 > 0, n2 = 1. Thus any pair of points separated by a spacelike interval must have the same unitary
transformation which relates free and interacting fields since we can always draw a hyperplane through
these points whose normal is a future-pointing timelike vector. Now any pair of points will have points
separated from both by a spacelike interval, so we are forced to conclude that U(t) is universal—i.e. that
it is actually independent of t. So U(t) = U(0) = 1 and the theory is just a free theory. The construction
of the operators U(t) relies on being able to separate the Hamiltonian into “free” and “interacting” parts.
This decomposition, it is proposed, is not possible in a Relativistic Quantum Field Theory.

2. The assumptions

i The states of a physical system form a linear vector space V over the complex numbers C, and this
is equipped with a sesquilinear, positive-definite inner product.

ii There exists a self-adjoint linear map Φ : M⊗ V → V, called the “field operator”, where M is
Minkowski space. All states and operators may be defined from this field operator.

iii There exists a representation of the identity-connected Poincaré group on V, which preserves the
inner product.
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iv There exists a Poincaré-invariant state, |0〉, called the vacuum.
v All the eigenvalues of the translation generators, or four-momentum operator Pa lie on or within

the forward light-cone.

vi A pair of field operators will either commute or anticommute when the spacetime points they refer
to are separated by a spacelike interval. The (anti)commutators of fields referring to the same
spacetime point are always c-numbers.

Since this would generally be regarded as a reasonable way of defining a Hermitian, scalar, self-
interacting field theory—together with the specification of the equation of motion—no apology will be made
for these.

3. The free scalar field

The existence of the Interaction Picture is an assumption in the usual formulation of field theory,
and the problem becomes the calculation of U(t) for large values of t. Here we are not assuming that U(t)
exists and are thereby forced to derive field theory in a different way. Our first consideration, then, is free
field theory, since, as will be seen, our method consists in the reducing of the interacting field into tensor
products of free fields. Also, it is desirable to show that the assumptions of §2 are sufficient to determine
free field theory entirely, and we do not have to introduce canonical quantisation as an extra ingredient.

We require the free field to give a state which belongs to a unitary irreducible representation of the
Poincaré group of mass m and spin zero. It must therefore obey the Klein-Gordon equation

(∂2 +m2)Φ(x) = 0 (3)

Consequently, a field defined at any time is linearly related to Φ(0,x) and Φ̇(0,x), the field and its time deriva-
tive at t = 0. The (anti)commutators of these, by assumption (vi), are c-numbers, so the (anti)commutator

[Φ(x),Φ(x′)]±

is always a c-number. Forming the Fourier transform

Φ(p) = (2π)−4
∫
d4x e−ip·xΦ(x) (4)

it follows that
[Φ(p),Φ(p′)]± (5)

is a c-number also. Now
[Pµ,Φ(x)] = −i∂µΦ(x) (6)

from which we find
[Pµ,Φ(p)] = pµΦ(p). (7)

Forming the commutator of Pµ with the (anti)commutator (5) we then see that, using a Jacobi identity, this
is zero unless p+ p′ = 0. So the c-number must have a factor δ(p+ p′). It must also have a factor δ(p2−m2)
since Φ(p) vanishes unless p2 = m2. This leads us to a most general form

[Φ(p),Φ(p′)]± = [a.θ(p0) + b.θ(−p0)] δ(p2 −m2) δ(p+ p′) (8)

where a and b are constants. Returning to configuration space, we see that

[Φ(x),Φ(x′)]± = a.f(x− x′) + b.f(x′ − x) (9)

where f(x) =

∫
d3p

2p0
eip·x

∣∣∣∣
p0=
√
p2+m2

(10)
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For a spacelike vector, f(x) = f(−x) (but this is not true in general), so to satisfy assumption (vi), we need
b = −a. Thus

[Φ(p),Φ(p′)]± = a.ε(p0)δ(p
2 −m2)δ(p+ p′). (11)

Exchanging p′ and p and multiplying by (±1) leaves the (anti)commutator invariant. Hence a = ∓a — i.e.
the system must be quantised with commutators, which is of course in accordance with the spin-statistics
theorem. Now Φ(p) = Φ†(−p), since the field is Hermitian, so we can write

[Φ†(p),Φ(p′)] = −a.ε(p0)δ(p2 −m2)δ(p− p′). (12)

Forming the vacuum expectation value of this quantity, we then see that if p0 > 0 and p′0 > 0, then the
second contribution of the commutator, by assumption (v), is zero (otherwise we would have a state of
negative energy). The first part is positive or zero, which tells us that the constant a is real and negative.
We shall choose a = −1, since any other choice could be realised by a simple rescaling of the fields. Thus,
our assumptions lead to

[Φ†(p),Φ(p′)] = ε(p0)δ(p
2 −m2)δ(p− p′), (13)

which is unique, apart from the scaling factor.

In configuration space, then, we have

[Φ(x),Φ(x′)] = i(2π)3∆(x− x′) (14)

where ∆(x) = −i
∫
d4p

(2π)3
δ(p2 −m2)ε(p0) e

−ip.x (15)

is the usual commutator function.

Hence the theory gives the same equal time commutators as the usual method (apart from the (2π)3

normalisation, which is simply a different choice of normalisation convention).

The Fourier transform fields relate to the annihilation and creation operators through

Φ(p) = δ(p2 −m2)[θ(p0)a
†(p) + θ(−p0)a(−p)]. (16)

The annihilation operators annihilate the vacuum on account of assumption (v), i.e. because otherwise we
would have a negative energy state: we do not, therefore, need to “prove” this on the basis of positive
definiteness of the Hamiltonian as constructed by the canonical quantisation method.

4. The interacting field

The equation of motion of Φ3 theory is

(∂2 +m2)Φ(x) = −λΦ(x)2. (17)

In terms of the four-dimensional Fourier transforms defined by (4), this is

(p2 −m2)Φ(p) = λ

∫
d4q Φ(q)Φ(p− q) (18)

We may solve this for the case where the physically significant matrix elements are continuous and infinitely
differentiable functions of λ, since we can then make the expansion

Φ(p[, λ]) = Φ0(p) + λΦ1(p) + λ
2Φ2(p) + · · · (19)
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The equation (18) then becomes an infinite set of equations, one for each power of λ. These are

(p2 −m2)Φ0(p) = 0

(p2 −m2)Φ1(p) =

∫
d4q Φ0(q)Φ0(p− q)

(p2 −m2)Φ2(p) =

∫
d4q (Φ0(q)Φ1(p− q) + Φ1(q)Φ0(p− q))

...

(p2 −m2)Φr(p) =

∫
d4q

r−1∑
i=0

Φi(q)Φr−i−1(p− q)

... (20)

Φ0(p), clearly, is just a free field, and the higher-order terms are reducible, directly or indirectly, to tensor
products of Φ0’s.

Our system must obey assumption (vi), which constrains the possible form of the equation of motion.
We now temporarily abandon the particular study of Φ3 theory to see what these constraints are in general,
taking with us only the results that the system has a characteristic coupling λ, such that we may expand the
field about λ = 0, and that Φ0 is a free field, with the higher-order terms being formed from tensor products
of these.

The free-field equal-time commutators are

[Φ(x, t),Φ(x′, t)] = 0

[Φ(x, t), Φ̇(x′, t)] = i(2π)3δ(x− x′)
[Φ̇(x, t), Φ̇(x′, t)] = 0 (21)

which may be rewritten in terms of the Fourier transforms thus:∫ ∞

−∞
dν {1, ν, ν2} [Φ(r + νn),Φ(q − r − νn)] = {0,−δ(q), 0} (22)

where na = (1, 0, 0, 0), but r and q are arbitrary four-vectors except that r · n = 0. Since the theory is
covariant, this holds for all n satisfying n0 > 0, n

2 = 1, which is equivalent to saying that the commutators
(21) hold for any choice of spacelike hyperplane.

In the presence of interactions we assume that these commutators still hold. We assume also, then,
that the c-numbers on the right-hand side are independent of the coupling constant. If they were not, then
it would only be to the extent of a λ-dependent scale factor, which could be removed by a rescaling of the
fields. The constraint on the higher-order fields is then

∫ ∞

−∞
dν {1, ν, ν2}

k∑
i=0

[Φi(r + νn),Φk−i(q − r − νn)] = 0 (23)

where k > 0. This can be solved. Let us do this for the first-order field, where∫ ∞

−∞
dν {1, ν, ν2} ([Φ0(r + νn),Φ1(q − r − νn)] + [Φ1(r + νn),Φ0(q − r − νn)]) = 0 (24)

It follows from this that ∫ ∞

−∞
dν

(
(ν ±R)((ν − ξ)2 − S2)− (ν − ξ[±]S)(ν2 −R2)

)
×

([Φ0(r + νn),Φ1(q − r − νn)] + [Φ1(r + νn),Φ0(q − r − νn)]) = 0. (25)
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since the cubic terms cancel. Here R =
√
m2 − r2, ξ = n · q, s = q− r− ξn and S =

√
m2 − s2. The notation

“[±]” means an independent choice of signs to the other “±”. Each of the quadratic factors cancels one of
the Φ0’s, so we can write (25) as∫ ∞

−∞
dν

(
(ν ±R)((ν − ξ)2 − S2)[Φ0(r + νn),Φ1(q − r − νn)] −

(ν − ξ[±]S)(ν2 −R2)[Φ1(r + νn),Φ0(q − r − νn)]
)
= 0 (26)

The commutator of Φ0 with a functional of Φ0 can be reduced to a sum of terms involving individual
commutators. The general formula is

[Φ0(p), S[Φ0]] = −
δS

δΦ0(−p)
δ(p2 −m2)ε(p0) (27)

where the functional derivative is defined by

δS[φ]

δφ(q)
= lim

ε→0

1

ε
(S[φ(p) + ε.δ(p− q)]− S[φ(p)]). (28)

Thus

∫ ∞

−∞
dν

(
(ν ±R)((ν − ξ)2 − S2)δΦ1(q − r − νn)

δΦ0(−r − νn)
δ((r + νn)2 −m2)ε(r0 + νn0) +

(ν − ξ[±]S)(ν2 −R2) δΦ1(r + νn)

δΦ0(−q + r + νn)
δ((q − r − νn)2 −m2)ε(q0 − r0 − νn0)

)
= 0 (29)

So

((q − r±)2 −m2)
δΦ1(q − r±)
δΦ0(−r±)

= ((q − s[∓])2 −m2)
δΦ1(q − s[∓])
δΦ0(−s[∓])

, (30)

where r± = r ±Rn and s± = s± Sn.
The set of three vectors, q, one of r±, and one of s± are independent. Hence both sides of (30)

depend on q only, from which we conclude that

(p2 −m2)
δΦ1(p)

δΦ0(−q)
= C(p+ q) (31)

where C(p+ q) is some operator. Now, the most general possible form for (p2 −m2)Φi(p) is a sum of terms
of the form ∫

d4p1d
4p2 · · · d4pr Mr(p− p1 − p2 − · · · − pr, p1, p2, · · · , pr)Φ0(p1)Φ0(p2) · · ·Φ0(pr) (32)

where Mr are c-number-valued functions. Applying the functional derivative, we see that eqn. (31) requires
that each Mr is independent of the pi’s except as they appear in the first slot. But, forming the commutator
with Pµ we obtain the result that the pi’s must add up to p, which means that there must be a momentum-
conserving delta function in the expression. The freedom is thus reduced to a single constant which we will
still call Mr, and the contribution to (p

2 −m2)Φi(p) is

Mr

∫
d4p1d

4p2 · · · d4prδ(p− p1 − p2 − · · · − pr)Φ0(p1)Φ0(p2) · · ·Φ0(pr). (33)

This is a local construction, since in configuration space this is

(∂2 +m2)Φ1(x) = −
∞∑
r=2

MrΦ0(x)
r (34)
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The higher-order fields can now be derived straightforwardly. To do this we note that

Φ̃k(p) = (p
2 −m2)Φk(p) =

∑
r

Mr

∫
d4p1d

4p2 · · · d4prδ(p− p1 − p2 − · · · − pr)∑
i1i2···ir

δk−i,i1+i2+···+irΦi1(p1)Φi2(p2) · · ·Φir (pr) (35)

is a formula that works for k = 1. To show that it works also for k > 1, we use the equation

∫ ∞

−∞
dν

k∑
m=0

(ν ±R)[Φm(r + νn), Φ̃k−m(q − r − νn)] −

(ν − ξ[±]S)[Φ̃m(r + νn),Φk−m(q − r − νn)] = 0, (36)

which follows from (23). Substituting the expression (35) for each appearance of Φ̃, and expanding the
commutators, we reduce this to terms which are zero provided that the spacelike commutators of lower order
hold. This establishes (35) as an expression which gives the higher-order fields. We have not, however,
proved that the solution is unique. Examining (23) we see that a higher-order field is necessarily arbitrary
to the extent of adding a solution of the kind Φ1. Allowing in such a solution at higher order has the effect
of leading to a series of terms at orders which are multiples of this, constructed in the same way as the series
(35) which is seeded by order λ fields. The best way of demonstrating this is to note that the relation (35)
for giving higher-order fields is equivalent to saying that the system has an equation of motion

(p2 −m2)Φ(p) = λ
∑
r

Mr

∫
d4p1d

4p2 · · · d4prδ(p− p1 − p2 − · · · − pr)Φ(p1)Φ(p2) · · ·Φ(pr). (37)

If Φ1 type solutions are introduced at (say) order k, then this is represented by an order λ
k term in the

coupling. Since they may be introduced at any higher order, it then follows that the most general solution is

(p2 −m2)Φ(p) =
∑
r

Mr(λ)

∫
d4p1d

4p2 · · · d4prδ(p− p1 − p2 − · · · − pr)Φ(p1)Φ(p2) · · ·Φ(pr) (38)

where Mr(λ) are a set of polynomials in λ, such that Mr(0) = 0. So, in configuration space,

(∂2 +m2)Φ(x) = −
∑
r

Mr(λ)Φ(x)
r (39)

is the equation of motion that expresses the most general solution to the spacelike commutativity requirement.
The points to note about this result are, firstly, that the equation of motion should be local is what

we would expect from spacelike commutativity, since this is rooted in the notion that information cannot
propagate faster than the speed of light. Secondly, no derivatives are allowed in the coupling. Our method
then shows that this is based on spacelike commutativity rather than “renormalisability”.

It is well known that the infinities of quantum field theory are a consequence of the locality of the
equations of motion. If one takes the view, as the author does, that pathological divergences are signals of
a fundamental inconsistency in the theory, then one could say that the problem is that assumptions (v) and
(vi) do not peacefully coexist. However, it is possible to formulate a much cleaner treatment of infinities
than is usual if one uses this method, avoiding, for the time being at least, the precise specification of the
equations of motion. The procedure is as follows.

The infinities arise from the terms Φ1 in the power series expansion, upwards. Examining (33), and
imagining that there is a vacuum state which lies to the right of it, we obtain infinite quantities when we
commute the negative-energy parts of the Φ0’s past positive-energy parts of Φ0’s standing to the right to
annihilate the vacuum. These infinities are readily removable. If we order the terms in the product so that
the annihilation parts always stand to the right, then this is equivalent to subtracting infinite amounts of
local field products of the same kind, but of lower order, so that, in principle at least, the normal ordered
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product still has the form of a solution of the spacelike commutativity requirement. The proof of the validity
of this procedure is that, as may easily be verified, eqn. (31) still holds. Thus the normal ordering of the
interaction at first order does not present the slightest problem. The removal of infinities in the fields of
order two and higher is, however, a little less rigorous. A higher-order field of order k first appears, and is
defined by, the extremal terms in the summation (36). These terms are the pair which appears alone in the
definition of Φ1, and in exact analogy to this case we can arrange the expression as

((q − r±)2 −m2)
δΦn(q − r±)
δΦ0(−r±)

− F̂n(q, r±) =

((q − s[∓])2 −m2)
δΦn(q − s[∓])
δΦ0(−s[∓])

− F̂n(q, s[∓]) (40)

where F̂n is an operator-valued function. If we put both sides equal to zero, then we may integrate to get
(35). In general, both sides equal a function of q only, and the inclusion of this would lead to the introduction
of a Φ1 type solution at this order. Now if F̂n has its component fields in normal order then we can integrate
the expression in such a way that no infinities would be introduced into the higher-order field. However
this is not in general the case. Putting F̂n into normal order requires a series of infinite quantities to be
subtracted from the original expression. We need to do this, so we justify it by noting that the terms to
be subtracted are infinite regardless of the values of r±, and thus are identical to the corresponding terms
in terms of s[±]. As noted earlier, the problem is one of the incompatibility of assumptions (v) and (vi),
so the best we can do is to say that if assumptions (v) and (vi) are compatible, then this is the series of
higher-order fields we obtain. No other pathological divergences appear to arise in this formalism.

5. The non-existence of the Interaction Picture

We are now in a position to supply a strong negative answer to the original question. We work with
Φ3 theory, with infinities suitably removed. We consider the matrix element

〈0|Φ(x, t)Φ(x′, t)Φ(x′′, t)|0〉. (41)

If the interaction picture exists, then, assuming that the vacuum is unitarily invariant (which is usual, apart
from a possible infinite phase, which would not in any case upset the argument here), this is equal to the
same matrix element of the free fields:

〈0|Φ0(x, t)Φ0(x′, t)Φ0(x′′, t)|0〉, (42)

which is necessarily zero. However, using the power series method developed earlier, we find an order λ
contribution

λ(〈0|Φ1(x, t)Φ0(x′, t)Φ0(x′′, t)|0〉+ 〈0|Φ0(x, t)Φ1(x′, t)Φ0(x′′, t)|0〉+ 〈0|Φ0(x, t)Φ0(x′, t)Φ1(x′′, t)|0〉)

=

∫
d4p d4p′ d4p′′ e−i(p·x+p

′·x′+p′′·x′′)δ(p+ p′ + p′′).2λ.(
1

p2 −m2
θ(p′0)δ(p

′2 −m2)θ(p′′0)δ(p
′′2 −m2) +

θ(−p0)δ(p2 −m2)
1

p′2 −m2
θ(p′′0)δ(p

′′2 −m2) +

θ(−p0)δ(p2 −m2)θ(−p′0)δ(p′2 −m2)
1

p′′2 −m2

)
= −λ

2

∫
d3p d3p′ d3p′′ e−i(p·x+p

′·x′+p′′·x′′)δ(p+ p′ + p′′)
1

EE′E′′(E + E′ + E′′)
(43)

where E =
√
p2 +m2, etc. This does not vanish, hence there is no Interaction Picture. One may readily

confirm that other choices of equations of motion and matrix elements lead us to the same conclusion.
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6. Life without the Interaction Picture

The result that we have derived, if true, has very wide implications for quantum field theory. It
means, in fact, that the whole Feynman-Dyson methodology must be discarded in favour of a more axiomatic
approach, such as the one developed here.

However, despite its inconsistencies, the Feynman-Dyson method obviously works well for many
physical systems so we must show that the method used here will substantially reproduce these results. In
fact, the correspondence with the orthodoxy is very natural, as we shall now see.

The lowest-order “physical” process in Φ3 theory is two-body scattering. The relevant matrix element
is:

〈0|Φ(t,−q1)Φ(t,−q2)Φ(0,p2)Φ(0,p1)|0〉 =∫
dq01dq

0
2dp

0
1dp

0
2 e

−i(q01+q
0
2)t 〈0|Φ(−q1)Φ(−q2)Φ(p2)Φ(p1)|0〉. (44)

The contributions to 〈0|Φ(−q1)Φ(−q2)Φ(p2)Φ(p1)|0〉 are readily obtained with the power series method.
There is also a very natural graphical representation:

〈0|Φ0Φ0Φ0Φ0|0〉:

q1 p1
a.

q2 p2

θ(p01)δ(p
2
1 −m2)δ(p1 − q1)θ(p02)δ(p22 −m2)δ(p2 − q2)

〈0|Φ0Φ0Φ0Φ0|0〉:

q1 p1
b.

q2 p2

θ(p01)δ(p
2
1 −m2)δ(p1 − q2)θ(p02)δ(p22 −m2)δ(p2 − q1)

Two Φ0’s and two Φ1’s:

q1 p1
c.

q2 p2

λ2θ(q01)δ(q
2
1 −m2)

1

p21 −m2
θ(p01 − q01)δ((p1 − q1)2 −m2)

1

q22 −m2
θ(p02)δ(p

2
2 −m2)δ(q1 + q2 − p1 − p2)

Also, correspondingly, there are the graphs:

d. + e. + f. +
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g. + h. + i. +

j. + k. + l. +

m. + n. +

There are four “self-energy” graphs also:

p1 − q
q1 p1

o. q

q2 p2

λ2

q21 −m2

∫
d4qθ(q0)δ(q2 −m2)θ(p01 − q0)δ((p1 − q)2 −m2)

1

p21 −m2
δ(p1 − q1)θ(p02)δ(p22 −m2)δ(p2 − q2).

Plus expressions corresponding to the graphs

p. +

q. + r.

Three Φ0’s and one Φ2, this completing the set for the two-body scattering amplitude up to second
order:
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q1 p1
a’.

q2 p2

λ2θ(p01)δ(p
2
1 −m2)

1

q21 −m2

1

(p1 − q1)2 −m2
θ(p02)δ(p

2
2 −m2)θ(q02)δ(q

2
2 −m2)δ(q1 + q2 − p1 − p2),

similarly, we have graphs

b’. +

c’. + d’. +

e’. + f’. +

g’. + h’. +

i’. + j’. +

k’. + l’.

The thin lines, which we call propagators, represent terms obtained when the negative-energy part
of a Φ0 is commuted past a positive-energy Φ0 standing to the right. Hence the factor θ(p

0)δ(p2 −m2) for
these. The heavy lines, which we call proliferators, on the other hand represent the terms associated with
the reduction of higher-order fields to lower-order ones, such as in (35). It is easy to convince oneself of the
graph rules that proliferators (i) cannot form loops of (just) proliferators and (ii) cannot join external lines
to each other by a path consisting solely of proliferators. The loops of propagators are finite, since these are
just phase space integrals over a finite phase space. The infinities presumed removed earlier would appear
as proliferator trees with propagators attached at both ends to the same tree.

Examination of these graphs reveals that the last twelve can exhibit a property not possessed by the
others, namely the possibility of resonance: i.e. the proliferators connecting to external lines may become
infinite given appropriate values of the four-momenta. This is as distinct from the proliferator in the middle
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which either has spacelike momenta, or has p2 ≥ 4m2 when it is a sum (the proliferators in the first group of
second-order graphs always satisfy one or other of these conditions). Thus the amplitude approaches infinity
as the particles approach being on-shell. The approximation we will make is that this pole dominates the
expression. Consider the expression for graph a’: the contribution to the matrix element (44) is

λ2

2E(p1)2E(p2)2E(q2)

1

q01
2 − E(q1)2

1

(p1 − q1)2 −m2
e−i(E(p1)+E(p2))tδ(q1 + q2 − p1 − p2) (45)

where E(p) =
√
p2 +m2 etc., pµ1 = (E(p1),p1), p

µ
2 = (E(p2),p2), q

µ
2 = (E(q2),q2), and q

µ
1 = (E(p1) +

E(p2)− E(q2),q1).
Evidently the pole domination assumption is tantamount to saying that (q01 −E(q1))−1 = (E(p1)+

E(p2) − E(q1) − E(q2))−1 is the pole that dominates, so that we can put q1 on shell in the rest of the
expression. This gives us

λ2

2E(p1)2E(p2)2E(q1)2E(q2)

1

(p1 − q1)2 −m2
e−(E(p1)+E(p2))t×

1

E(p1) + E(p2)− E(q1)− E(q2)
δ(q1 + q2 − p1 − p2) (46)

where all the momenta are on shell now. The other eleven graphs give pole contributions which are derived
in exactly the same way. Doing this, we find that the zeroth-order for two-body scattering, plus the pole
parts in second-order, gives

〈0|Φ(t,−q1)Φ(t,−q2)Φ(0,p2)Φ(0,p1)|0〉 =

e−i(E(p1)+E(p2))t

2E(p1)2E(p2)
(δ(p1 − q1)δ(p2 − q2) + δ(p1 − q2)δ(p2 − q1)) +

2λ2

2E(p1)2E(p2)2E(q1)2E(q2)

e−i(E(q1)+E(q2))t − e−i(E(p1)+E(p2))t
E(q1) + E(q2)− E(p1)− E(p2)

×(
1

(p1 − q1)2 −m2
+

1

(p1 + p2)2 −m2
+

1

(p1 − q2)2 −m2

)
δ(q1 + q2 − p1 − p2). (47)

Within this approximation, the interaction picture exists. This is most readily seen by comparing with

〈q1q2|eiHt|p2p1〉 = ei(E(p1)+E(p2))tδ(p1 − q1)δ(p2 − q2) +

〈q1q2|V |p2p1〉
ei(E(q1)+E(q2))t − ei(E(p1)+E(p2))t
E(q1) + E(q2)− E(p1)− E(p2)

+O(V 2) (48)

which is the scattering amplitude up to first order, for a two-particle system in ordinary quantum mechanics,
where H = H0 + V , and input and output particle states are eigenstates of H0. In this case, where the
particles are identical, we need to insist that the wavefunctions multiplying the states are symmetric with
respect to particle exchange. The differential cross-section for particle scattering for such a system is given
by

dσ =
1

v
d3q1d

3q2|〈q1q2||V ||p2p1〉|2(2π)4δ4(q1 + q2 − p1 − p2) (49)

where v is the velocity of one particle beam in a frame in which the other is at rest. The reduced matrix
element 〈 || · · · || 〉 differs from the other in that the three-momentum conservation delta function has been
extracted.

The differing sign of t is irrelevant, so making a shift

Φ(.,p2)Φ(.,p1)|0〉 →
1√
2

√
2E(p2)

√
2E(p1)Φ(.,p2)Φ(.,p1)|0〉 (50)
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we see that the system is like the above with a reduced matrix element

〈q1q2||V ||p2p1〉 =
λ2√

2E(p1)2E(p2)2E(q1)2E(q2)
×(

1

(p1 − q1)2 −m2
+

1

(p1 + p2)2 −m2
+

1

(p1 − q2)2 −m2

)
(51)

so the scattering cross section is

dσ =
1

v

d3q1
2E(q1)

d3q2
2E(q2)

1

2E(p1)

1

2E(p2)
(2π)4δ(q1 + q2 − p1 − p2) ×

λ4
[

1

(p1 − q1)2 −m2
+

1

(p1 + p2)2 −m2
+

1

(p1 − q2)2 −m2

]2
(52)

In this formulation we have chosen normalisations which avoid factors of (2π)3 appearing as much as possible.
This means that we need to make the substitutions

Φ→ (2π)3/2Φ

λ→ (2π)−3/2λ (53)

to compare with the usual formulation. We obtain

dσ =
1

v

d3q1
(2π)32E(q1)

d3q2
(2π)32E(q2)

1

2E(p1)

1

2E(p2)
λ4 ×[

1

(p1 − q1)2 −m2
+

1

(p1 + p2)2 −m2
+

1

(p1 − q2)2 −m2

]2
(2π)4δ(q1 + q2 − p1 − p2) (54)

This agrees with the expression obtained from considering the Feynman graphs

q1 p1 q1 p1 q1 p1

+ +

q2 p2 q2 p2 q2 p2

apart from a numerical factor: in the Feynman graph approach this result is obtained with an
equation of motion (∂2 +m2)Φ = −λΦ2/2! whereas we have obtained it with an equation of motion (∂2 +
m2)Φ = −λΦ2.

7. Conclusion and outlook

We have seen that it is possible to reproduce the result of Feynman graph analysis for two-body
scattering in a scalar theory using a formalism that does not assume the existence of the interaction picture.
In doing so we were able to obtain our result by much more mathematically acceptable methods than usual:
specifically, the “renormalisation” procedure was not required. It is easy to see how our methods extend to
reproduce the results of any analysis involving just “tree” Feynman graphs.

Having done this the next task is to extend our formalism to the analysis of real processes. A
preliminary investigation has shown that one can formulate a “Salam-Weinberg” theory of Weak and Elec-
tromagnetic interactions quite straightforwardly. Gauge theories are forbidden in our formalism: non-Abelian
ones specifically because they involve derivative couplings, but more generally because the method does not
permit massless particles of spin greater than one half (by an argument entirely analogous to that given
in §4 one may establish that vector-vector couplings that involve derivatives belong to fields which do not
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commute for spacelike intervals; vector fields may not be totally massless since there then would be graphs—
in fact those corresponding to (o) and (p) of §6 —from which we could never abolish gauge dependence).
Hence we need to approach the Salam-Weinberg theory after the symmetry has been broken, and allow the
photon to have a mass, however small. The procedure is then simple: leave out all of the Higgs fields and
the vector-vector couplings, and put the masses in directly, by hand. What is known about the Weak force is
based on single Boson exchange, and an analysis on the same lines as that in §6 shows us that our results for
these processes will then be the same. We do not have to worry about violating “unitarity” because, without
an interaction picture, there is no “unitarity” to violate. Also, we do not have to worry about bad terms
in the vector propagator, since the “propagator” here is a proliferator, and this is just the Green function
associated with the equation of motion, which is simply gµν(q

2 −M2
B)

−1, where MB is the Boson mass.
Thus the Weak interaction, and scattering processes in Quantum Electrodynamics are easy to model.

However the real test is whether we can obtain expressions for the Lamb Shift and the anomalous magnetic
moment which agree with experiment as well as the usual method. At the time of writing (June 1986) the
situation is as follows: it is impossible to treat systems where the encounter time is large (i.e. bound states,
and the classical limit, both of which need to be understood to get these fine corrections) by considering
only the low-order graphs. This is easily shown, but if we pretend that this is not a problem we may get the
correct gross and fine structure of the Hydrogen atom by considering single photon exchange but at the fine
structure level, the results depend on interpretation. The only satisfactory answer is based on the study of
the appropriate Bethe-Salpeter equation, which, within this formalism, can be written down and (I hope)
solved.
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