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ON THE POSSIBILITY OF QUANTUM FIELD THEORY
WITHOUT RENORMALISATION

C.G. OAKLEY

Dept. of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK

The requirements of positive energy and a Poincaré-invariant vacuum, strictly applied, seem to lead to a
quantum field theory that does not need renormalisation. This is illustrated for the case of φ4 scalar field
theory.

Feynman-Dyson perturbation theory, although undoubtedly an elegant and powerful structure has (in
my opinion) two major flaws: (i) it is difficult to see how the definition of the vacuum state, namely that
it is annihilated by the interaction-picture annihilation operators, is Poincaré invariant, since the definition
of the interaction picture requires a preferential choice of timelike direction; and (ii) infinite answers are
obtained for most physical observables: only by introducing a set of rules which involve infinite subtractions
can these be made finite.

The thesis of this letter is that these two defects are closely related, and to be more specific, the ruthless
application of the principles of positive energy and Poincaré invariance of the vacuum leads to a theory which
does not need renormalisation. Our starting point is the equation of motion of φ4 theory:

(∂2 +m2)φ(x) +
λ

6
φ3(x) = 0 (1)

We need to inject here the additional assumption that the solutions of physical interest, as functions of λ,
are continuous and infinitely differentiable at λ = 0. This allows us to make the expansion

φ(x) = φ0(x) + λφ1(x) + λ
2φ2(x) + · · · (2)

(1) is then an infinite set of equations, one for each power of λ. If we define φ(p) by

φ(p) = (2π)−4
∫
d4x e−ip·x φ(x) (3)

then we find that the equations of motion are

(p2 −m2)φ0(p) = 0 (4)

(p2 −m2)φ1(p) =
1

6

∫
d4p1d

4p2d
4p3 δ(p− p1 − p2 − p3) φ0(p1)φ0(p2)φ0(p3) (5)

(p2 −m2)φ2(p) =
1

6

∫
d4p1d

4p2d
4p3 δ(p− p1 − p2 − p3)

[
φ1(p1)φ0(p2)φ0(p3) +

φ0(p1)φ1(p2)φ0(p3) + φ0(p1)φ0(p2)φ1(p3)
]

(6)

etc.

Evidently φ0 satisfies free-field equations of motion. The higher-order terms are determined by φ0, and
we can write (e.g.)

φ1(p) = c1.φ0(p) +
1

p2 −m2
· 1
6
·
∫
d4p1d

4p2d
4p3 δ(p− p1 − p2 − p3) φ0(p1)φ0(p2)φ0(p3) (7)
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(it is not necessarily obvious that p2 −m2 can be inverted, but we will assume it here).
Since the theory is determined by φ0(p) it makes sense to evaluate the commutators of these quantities.
We note that

f(λ).φ0(p) = φ(p)−
1

p2 −m2
· λ
6
·
∫
d4p1d

4p2d
4p3 δ(p− p1 − p2 − p3) φ(p1)φ(p2)φ(p3) (8)

where
f(λ) = 1 + c1λ+ c2λ

2 + · · · (9)

However the definitions of “in” and “out” fields are given by

φ in
out
(x) = φ(x) +

λ

6

∫
d4x′∆ ret

adv
(x− x′)φ3(x′) (10)

which in momentum space are

φ in
out
(p) = φ(p)− λ

6
· 1

p2 −m2 ∓ iζ.ε(p0) ·
∫
d4p1d

4p2d
4p3 δ(p− p1 − p2 − p3) φ(p1)φ(p2)φ(p3) (11)

where ζ is an infinitesimal positive number and ε(t) = sign(t). We shall find here that the parameter ζ is
unimportant, so effectively

f(λ).φ0(p) = φin(p) = φout(p) (12)

The commutators of φin and φout have been determined by Zimmermann: the canonical commutators of the
interacting field imply that φin and φout have free-field commutators. Thus f(λ) = 1 and

[φ0(p), φ0(q)] = (2π)
−3δ(p+ q)δ(q2 −m2)ε(q0) (13)

Finally we need some information about the vacuum state: Poincaré invariance implies that

[Pµ, φ0(x)] = −i∂µφ0(x) (14)

Hence
[Pµ, φ0(p)] = pµφ0(p) (15)

Since the vacuum is Poincaré invariant we can write

Pµφ0(p)|0〉 = [Pµ, φ0(p)]|0〉 = pµφ0(p)|0〉 (16)

so φ0(p)|0〉 is a state of four-momentum pµ. However we also require that there are no negative-energy
states, so φ0(p)|0〉 must be simply zero if p0 < 0. This is all we need to do calculations.

Consider first the matrix element
〈0|φ(p)φ(q)|0〉 (17)

We can expand the fields in powers of λ and so obtain

〈0|
(
φ0(p) +

λ

6

1

p2 −m2

∫
d4p1d

4p2 φ0(p1)φ0(p2)φ0(p− p1 − p2) + · · ·
)

(
φ0(q) +

λ

6

1

q2 −m2

∫
d4q1d

4q2 φ0(q1)φ0(q2)φ0(q − q1 − q2) + · · ·
)
|0〉 (18)

The lowest-order contribution is
(2π)−3δ(p+ q)δ(q2 −m2)θ(q0) (19)
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The higher-order corrections have infinities which can be removed by normal ordering: consider∫
d4q1d

4q2φ0(q1)φ0(q2) φ0(q − q1 − q2)|0〉 (20)

A little algebra shows that this is of the form∫
d4q1d

4q2 φ
(+)
0 (q1)φ

(+)
0 (q2)φ

(+)
0 (q − q1 − q2)|0〉+ (2π)−3.3

[∫
d4p1 δ(p

2
1 −m2)θ(p01)

]
φ
(+)
0 (p)|0〉 (21)

where
φ
(+)
0 (q) = θ(q0)φ0(q) (22)

is the positive-energy part of φ0, which creates a particle from the vacuum (N.B. (i) the positive-energy parts
of the field operators commute with each other; (ii) positive energy is equivalent to negative frequency and
vice versa).

Thus we have resolved this state into a one-particle state and a three-particle state. Since p2 > 9m2 for a
three-particle state, there is no difficulty with applying (p2−m2)−1 to the left to obtain φ1(p): however for the
one-particle part, not only is (p2 −m2) not invertible, but also there is a divergent constant multiplying the
expression. These difficulties can be removed by normal ordering the interaction in (1): with the annihilation
part to the right φ1(p) can then create the three-particle part only (but I am not very happy with this since
the interaction is then non-local: but it seems that for theories of evident physical application, such as
quantum electrodynamics, under certain conditions normal ordering is not necessary—work is being done
on this). The normal ordering ensures that the states φn(p)|0〉 contain no single-particle parts for n > 0.
Hence the lowest-order correction to (17) is

λ2〈0|φ1(p)φ1(q)|0〉 =
(λ
6

)2 1

p2 −m2

1

q2 −m2

∫
d4p1d

4p2d
4q1d

4q2

〈0|φ(−)0 (p1)φ
(−)
0 (p2)φ

(−)
0 (p− p1 − p2)φ(+)0 (q1)φ

(+)
0 (q2)φ

(+)
0 (q − q1 − q2)|0〉 (23)

=
λ2

6

1

p2 −m2

1

q2 −m2
(2π)−9

∫
d4q1d

4q2 θ(q
0
1)δ(q

2
1 −m2)

θ(q02)δ(q
2
2 −m2)θ(q0 − q01 − q02)δ((q − q1 − q2)2 −m2)δ(p+ q) (24)

There is a diagram interpretation following directly from this calculational technique: to calculate the matrix
element

〈0|φ(q1)φ(q2) · · ·φ(p1)φ(p2) · · · |0〉
q01 , q

0
2 , · · · < 0 (outgoing particles)

p01, p
0
2, · · · > 0 (incoming particles) (25)

we sum an infinite series of diagrams as follows:

(1) All topologically possible diagrams are legitimate provided a line comes in for incoming particles, pos-
sibly connecting to some internal network, and then goes out so that all external lines are accessed. No
disconnected diagrams are possible.

(2) The network is drawn such that four-momentum is conserved at each vertex. There is an overall
momentum-conservation factor δ(q1+ q2+ · · ·+ p1+ p2+ · · ·). A factor λ is placed at each vertex (and these
are always four-point), and for each loop a factor

∫
d4q for the undetermined momentum.

(3) There are two kinds of propagator:
(i) Type 1 (“proliferator”). Drawn with a heavy line. Factor (p2−m2)−1. These are always connected

through other proliferators to an external line. However (a) it is never possible to go from one
external line to another by proliferators alone, and (b) one may not have a loop of just proliferators.
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(ii) Type 2 (“propagator”). Drawn with a thin line. Factor (2π)−3θ(p0)δ(p2 − m2) May connect to
external lines. A vertex may not consist solely of propagators.

(4) Divide loops with the occurence of g identical propagators by g!.

(5) Draw arrows starting from each incoming line, outwards from a vertex to show momentum flow. Possible
vertices are shown in fig. 1.

Fig. 1: Types of interaction vertex.

This is best illustrated by examples. (23) is the second-order self energy (fig. 2):

q1

q (= −p) q2 q

q − q1 − q2

Fig. 2: Second-order self energy.

Observing the graph rules we have:

incoming and outgoing proliferators: 1
p2−m2

1
q2−m2

three propagators:(2π)−3θ(q01)δ(q
2
1−m2)(2π)−3θ(q02)δ(q

2
2−m2)(2π)−3θ(q0−q01−q02)δ((q−q1−q2)2−m2)

undetermined momenta:
∫
d4q1d

4q2

two vertices: λ2

statistical factor: 1
3!

momentum conservation: δ(q + p)

which gives us (24):

λ2

6

1

p2 −m2

1

q2 −m2
δ(p+ q)(2π)−9

∫
d4q1d

4q2 θ(q
0
1)δ(q

2
1 −m2)

θ(q02)δ(q
2
2 −m2)θ(q0 − q01 − q02)δ((q − q1 − q2)2 −m2)

Similarly we could draw graphs for two-body scattering, e.g. Fig. 3:
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−p1 q1

q1 − p1 − q q

−p2 q2

Fig. 3: Two-body scattering graph.

which gives us

δ(p1 + p2 + q1 + q2)
1

q21 −m2
(2π)−6θ(−p01)δ(p21 −m2)θ(q02)δ(q

2
2 −m2)

1

p22 −m2

λ2

2

∫
d4q(2π)−6θ(q0)δ(q2 −m2)θ(q01 − p01 − q0)δ((q1 − p1 − q)2 −m2) (26)

Note that the graph rules are such that the graphs give numerical expressions which are not infinite.

The physical interpretation is fairly evident. The state

|t,p〉 =
∫ ∞

0

dp0 eip0t φ(p)|0〉 (27)

represents a particle at time t, with three-momentum p. The states of time t and different p are orthogonal,
and can be made orthonormal, by multiplying by a suitable function of p. This becomes a little more
complicated for multiparticle states because we find that higher-order corrections imply that although states
of different total three momentum are orthogonal, states of the same total momentum but different individual
momenta are not. This is not surprising since the argument that leads us to suppose that they would be
orthogonal is that they are eigenvectors of Hermitian operators with different eigenvalues: but the operators
corresponding to individual particle momenta simply do not exist and therefore this does not apply.

The same methods can be applied to quantum electrodynamics, or indeed any field theory (I have chosen
φ4 theory simply because it avoids complications arising from gauge freedom).
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